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Abstract We present an overview of recent developments
concerning modifications of the geometry of space-time to
describe various physical processes of interactions among
classical and quantum configurations. We concentrate in
two main lines of research: the Metric Relativity and the
Dynamical Bridge. We describe the notion of equivalent
(dragged) metric ĝμν which is responsible to map the
path of any accelerated body in Minkowski space-time
onto a geodesic motion in such associated ĝ geometry.
Only recently, the method introduced by Einstein in gen-
eral relativity was used beyond the domain of gravitational
forces to map arbitrary accelerated bodies submitted to
non-Newtonian attractions onto geodesics of a modified
geometry. This process has its roots in the very ancient
idea to treat any dynamical problem in Classical Mechan-
ics as nothing but a problem of static where all forces
acting on a body annihilates themselves including the iner-
tial ones. This general procedure, that concerns arbitrary
forces—beyond the uses of General Relativity that is lim-
ited only to gravitational processes—is nothing but the
relativistic version of the d’Alembert method in classical
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mechanics and consists in the principle of Metric Relativ-
ity. The main difference between gravitational interaction
and all other forces concerns the universality of gravity
which added to the interpretation of the equivalence princi-
ple allows all associated geometries—one for each different
body in the case of non-gravitational forces—to be uni-
fied into a unique Riemannian space-time structure. The
same geometrical description appears for electromagnetic
waves in the optical limit within the context of nonlinear
theories or material medium. Once it is largely discussed
in the literature, the so-called analogue models of grav-
ity, we will dedicate few sections on this emphasizing their
relation with the new concepts introduced here. Then, we
pass to the description of the Dynamical Bridge formalism
which states the dynamic equivalence of nonlinear theories
(driven by arbitrary scalar, spinor or vector fields) that occur
in Minkowski background to theories described in asso-
ciated curved geometries generated by each one of these
fields. We shall see that it is possible to map the dynam-
ical properties of a theory, say Maxwell electrodynamics
in Minkowski space-time, into Born-Infeld electrodynam-
ics described in a curved space-time the metric of which
is defined in terms of the electromagnetic field itself in
such way that it yields the same dynamics. It is clear that
when considered in whatever unique geometrical structure,
these two theories are not the same; they do not describe
the same phenomenon. However, we shall see that by a
convenient modification of the metric of space-time, an
equivalence appears that establishes a bridge between these
two theories making they represent the same phenomenon.
This method was recently used to achieve a successful
geometric scalar theory of gravity. At the end, we briefly
review the proposal of geometrization of quantum mechan-
ics in the de Broglie-Bohm formulation using an enlarged
non-Riemannian (Weyl) structure.
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1 Preliminary Comments

The success of general relativity (GR) led to the general
acceptance that the introduction of a geometry to describe a
physical process yields a unique structure identified to the
space-time. However, this is a rather general mathematical
procedure, and one can apply the modification of the back-
ground geometry to substitute the acceleration not only by
gravity but by any kind of force; introducing specific and
limited geometries for different observers in many distinct
situations seems to be a very useful tool.

One could accept that the achievements of a given the-
ory may depend on the uniqueness of its representation.
However, in more recent years, we have learned that the
possibility of presenting an alternative equivalent descrip-
tion of a given phenomenon may be an important theoretical
tool. The presentation of a theory under distinct formula-
tions has been of great help in many occasions, as we will
verify with direct examples in these notes. We shall see how
it is possible to modify the background geometry of space-
time (intrinsic to the description of gravitational interactions
according to the rules and proposals of GR) to describe the
effect of forces of distinct and multiple natures. A well-
known example concerns the propagation of light inside
moving dielectrics.

We shall describe how very different modifications of the
space-time geometry have been used to describe accelerated
paths in Minkowski space-time as geodesics in an associ-
ated curved Riemannian geometry and even to exhibit the
equivalence dynamics of various fields in distinct associated
geometries.

An important step in the construction of the theory of spe-
cial relativity was the hypothesis that a specific proper time
can be assigned for each body. Distinct observers establish
distinct times. This proposal highlights the importance of
an individual body in the description of its kinematics and
stresses the importance of the global aspects of the physical
description in the domain of mechanics. Such an individ-
ualization was new in the standard program of physics
that usually is based, in a very broad sense, to develop
formalisms that intended to be universal.

After the success of this procedure, there has been a need
to recover the global and unified character of the theoret-
ical framework. This has indeed come about through the
next big step made by the entrance of a dynamical scheme
associated to the universal gravitational interaction, which
becomes identified to an attribute of the structure of space-
time. There, the geometry of space-time allows all test
bodies to be considered as free particles in a curved world

and to follow the geodesics on this curved space-time, as
far as gravity is taken into account solely. If a body suffers
a particular acceleration of non-gravitational character, this
freedom disappears and the body follows a non-geodesic
path.

The purpose of these notes is to describe some new
results that intend, in a very particularly and precise way, to
extend the idea that it is possible to deal with any kind of
force through similar lines as suggested by GR. This means
to introduce the idea that modifications of the geometry of
space-time may describe a large variety of physical pro-
cesses. In other words, to generalize the approach of GR in
order to represent all kind of acceleration as nothing but a
modification of the geometry. Along this line, the path of
any body on which an arbitrary force has acted upon, can
be described as if this body is free, without any interaction,
in a particular associated metric structure that depends on
both, the characteristics of the force and the kinematics of
the body. Let us point out that there are obvious distinctions
between the case of GR and all other cases. This is due to
the universality of gravitational processes. Indeed, one of
the postulates of GR states that there exists one and only one
geometric structure of space-time as perceived for all that
exists. Besides that, the uniqueness of the scenario where
all events occurs lies on the hypothesis that its geometry is
controlled by the gravitational phenomena. This unification
requires the neglect of all other kind of interaction and must
be interpreted as some sort of approximation related to the
degree of amplitude of its corresponding description. This
beautiful requirement of GR appears in each observation
as specific examples of geometries obtained as a particular
solutions of its dynamics. In these notes, we will analyze
another possibility.

The original GR proposal was concerned with the possi-
bility of eliminating the acceleration induced on an arbitrary
body A by a gravitational field by a convenient modification
of the metric associated to the space where A is propagating.
GR shows that all gravitational effects can be equivalently
described in terms of such an universal modification of the
space-time geometry.

However, from the technical point of view, this is only
one possibility. Indeed, as we shall review in these notes,
this should not be considered the only possibility, and one
could well make other conventions to ascribe specific met-
rics to different events. According to this point of view,
to each interaction, a particular modification of the met-
ric environment in which a body moves in such a way that
any kind of force can be eliminated by this interpretation is
likely to be associated. After this characterization of its own
metric structure, the body is interpreted as realizing a free
motion. In other words, the metric becomes just a conven-
tion to eliminate the force that drives the motion of a body.
The main direct consequence of this is that, contrary to the
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principles of GR, these metrics do not need any additional
constraint associated to its dynamics.

The very fact that GR assumes that the universality of
gravity is the origin to accept its geometric interpretation
and once this modification of the geometry is universal,
completely independent of any particular process, makes
obligatory the existence of a specific dynamics of the space-
time metric. In the case of other forces, once each process
has its own origin that produces a metric in order to compen-
sate the force, there is no room to impose an extra dynamics
for the geometry: its characterization is specified by the
interaction.

It is clear that this strategy has a drawback: we lose the
uniqueness of space-time. However, such uniqueness may
be understood as nothing but a suitable and conventional
way to describe the universality of gravitational interaction.
Let us remark that in the original paper that generated the
modern point of view of geometrical spaces, the great math-
ematician Riemann [173] supported such a proposal, which
was not the point of view emphasized and developed in the
theory of general relativity. On the eve of his 150th death
anniversary, we intend to rescue the seminal ideas con-
cerning the role of the Riemannian geometries in Physics
developed by him, which were not investigated before.

There is no better way to start such analysis than con-
sidering the analogy with the photon propagation inside a
moving dielectric. In general, we know that the light path
acquires an acceleration inside a medium. In the early twen-
ties, Gordon showed that it is possible to describe this path
as a geodesics in a modified metric. This means that a
change of the geometry can eliminate the acceleration in a
very similar way as it is done in GR. It is clear that such geo-
metric description is not indispensable. The choice of such
point of view yields a new path of investigation which was
named analogue models of gravity. This means to mimic
gravitational configurations by means of non-gravitational
interactions. In the case of Gordon, he used electromag-
netic forces to represent gravitational interactions. We shall
see that the interest on Gordon’s approach goes beyond its
original proposal once it allows a generalization to include
all kinds of accelerated paths, independently of the origin
of the force that produced it and for any kind of mas-
sive or massless body. This result seemed to be hidden
and its importance diminished during more than half a
century.

The main reason for this concerns the way gravity was
related to the geometry of space-time and the various
unsuccessful proposals of unification of electrodynamics
into an unique geometric framework. We know that such
unfruitful works were related to the non universality of the
non-gravitational forces. However, there is another compo-
nent to be taken into account as soon as we realize that
this method is nothing but the relativistic version of an

ancient idea of d’Alembert’s to transform a dynamical prob-
lem into a static one. We shall see that this reduction is made
by a modification of the evaluation of distances in the
space-time through a change in its geometry. We call such
procedure Metric Relativity (MR).

We shall finally enter the microphysics and the domain of
quantum properties. We shall see that an unexpected novelty
on the structure of 3-D space may be hidden in the quantum
world. This will be described by using the de Broglie-Bohm
causal formulation of quantum mechanics. We shall be pre-
pared to make another drastic change to our description of
the motion of bodies in space. According to Riemann in
his Habilitation Dissertation, one should wounder about the
extension of our ideas of geometry beyond the observation
limits of the infinitely great and the infinitely small. In these
notes, we have made constant references to GR and the
modification on the structure of geometry that it proposes
in our neighborhood and in the immense regions of the uni-
verse. We will now look to the other direction, to the one that
consists the micro-world. How should we treat the geometry
in these extremely small regions?

Since ancient times, Euclidean geometry was considered
the most adequate mathematical formulation to describe
the physical space. However, its validity can only be
established a posteriori for its construction yields use-
ful notions to connect physical quantities such as the
Euclidean distance between two given points. Special rel-
ativity modified the notion of three-dimensional Euclidean
space to incorporate time in a four-dimensional contin-
uum (Minkowski space-time). Later on, GR generalized
the absolute Minkowski space-time to describe gravita-
tional phenomena by considering the space-time mani-
fold as a dynamical structure constituting a Riemannian
manifold.

According to Riemann, the matter of which geome-
try is actually realized in nature has to be determined by
physical experiments. Instead of imposing a priori that non-
relativistic quantum mechanics has to be constructed over a
Euclidean three-dimensional background as it is tradition-
ally done, we shall see that quantum effects can also be
interpreted as a manifestation of a non-Euclidean structure
derived from a variational principle. We then arrive at a spe-
cial subclass of a more general structure than Riemannian
geometries, known as Weyl space which, in the de Broglie-
Bohm vision of quantum phenomenon, should be used to
“determine the measure-relations of space.”

2 Brief Mathematical Compendium

In this section, we display some formula and definitions that
will be used throughout this paper. The lector interested in
more details on the origin and developments that led to these
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expressions can check the references, mainly the textbooks,
in the bibliography at the end [2, 6, 174, 191, 200].

The Riemannian manifold is characterized by a second-
order symmetric tensor gμν and a connection �μ

αβ related by
the formula

�
μ
αβ = 1

2
gμν
(

gνα,β + gνβ,α − gαβ,ν
)

.

The Minkowski metric γμν takes the following
form when expressed in a Cartesian coordinate sys-
tem diag(1,−1,−1,−1). In this coordinate system, it
is denoted by ημν . Greek indices run from 0 to 3. The
covariant derivative (;) is written as

vμ ; ν = vμ,ν − �α
μνvα, (1)

where vμ,ν ≡ ∂νvμ denotes partial derivatives. The metric-
ity Riemannian condition is expressed as

gμν ;λ = 0.

Then, it follows

vα ;μ;ν − vα ;ν;μ = Rα
βμν v

β,

where Rα
βμν is the Riemann curvature tensor. In terms of

the connection, we can write

R
μ
εαβ = �

μ
εα,β − �

μ
εβ,α + �

μ
βσ �

σ
εα − �μ

ασ �
σ
βε.

The curvature tensor satisfies the algebraic identities
Rμναβ = −Rμνβα = −Rνμαβ = Rαβμν, and the Bianchi
identities

R
μν

αβ;λ + R
μν

λα;β + R
μν

βλ;α = 0.

Contacting indices, it then follows

R
μν

;ν − 1

2
R,ν g

μν = 0,

which implies, through the GR equations, the conservation
of the energy-momentum tensor. We note that this equation
is obtained from Hilbert Lagrangian

δS = δ

∫ √− g R = 0,

where we use δ
√−g = − 1

2
√−g gμν δg

μν .

2.1 Non Metricity

We shall deal with a generalization of Riemannian geom-
etry that was introduced by Weyl [203] defined by the
non-metricity condition:

gμν ; λ = fλ gμν,

where fλ is an arbitrary vector. It then follows that the affine
connection is given by

�λ
μν = {λμν

}− 1

2

(

δλμfν + δλν fμ − gμνf
λ
)

,

where {λμν} is the Christoffel symbol constructed with the
metric tensor.

2.2 Duality

The Levi-Civita completely anti-symmetric object εαβμν
takes the value 1 when indices are (0123) or any even
permutation, −1 for odd permutations and vanishes for
repeated indices. We can then construct the tensor

ηαβμν = √−g εαβμν

where g is the determinant of gμν. Using this object, we
define a dual, that is, for any anti-symmetric tensor Fμν =
−Fνμ we construct its dual by the relation:

F ∗
μν ≡ 1

2
ημναβ F

αβ.

Thus, F ∗∗
μν = −Fμν .

It is useful to construct the quantity gαβμν ≡ gαμgβν −
gανgβμ that satisfy the symmetries

gαβμν = −gαβνμ = −gβαμν = gμναβ.

It is easy to see that gαβμν is the dual of η∗
αβμν , i.e.,

η∗
αβμν = − gαβμν

and inversely

g∗
αβμν = ηαβμν.

Note that εαβμν is a pseudo-tensor, although ηαβμν is a
true tensor, that is

ημνρσ = gμαgνβgρεgσληαβελ.

Thus, we obtain

ηαβμν = − 1√−g
εαβμν.

All the contractions of the Levi-Civita tensor with itself
are collected below:

ηαβμνηρσελ = −δ
αβμν
ρσελ ,

ησνρεηλαβε = −δ
σνρ
λαβ ,

ηαβελη
σνελ = −2δσναβ , (2)

ησνεληβνελ = −6δσβ ,

ηαβμνηαβμν = −24,

where

δ
μνβ
λαρ = det

∣

∣

∣

∣

∣

∣

δ
μ
λ δ

μ
α δ

μ
ρ

δνλ δνα δνρ

δ
β
λ δ

β
α δ

β
ρ

∣

∣

∣

∣

∣

∣

.
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2.3 Decomposition of an Anti-Symmetric Tensor: The
Faraday Tensor

An arbitrary observer endowed with a normalized 4-velocity
vμ can decompose any second-order anti-symmetric tensor
Fμν into its electric and magnetic parts under the form:

Fμν = −vμEν + vνEμ + ημν
ρσ vρHσ ,

where the electric (Eμ) and magnetic (Hμ) vectors are
defined by

Eμ = Fμαv
α, and Hμ = F ∗

μαv
α = 1

2
η ρσ
μα FρσV

α

It then follows that these vectors are defined in the 3-space
orthogonal to the observer with velocity vμ, that is

Eμv
μ = 0 and Hμv

μ = 0

The six degrees of freedom of Fμν are represented by the
3 + 3 quantities Eμ e Hμ.

The gauge invariant scalars constructed with the electro-
magnetic field represented by the Faraday tensor Fμν are
given by

F ≡ Fμν F
μν and G ≡ F ∗

μν F
μν

The following algebraic identities hold

∗Fμα ∗Fαν − FμαFαν = 1

2
Fδμν, (3)

∗FμαFαν = −1

4
Gδμν, (4)

Fμ
α Fα

β Fβ
ν = −G

4
∗Fμ

ν − F

2
Fμ
ν , (5)

Fμ
α Fα

β F
β
λ Fλ

ν = G2

16
δμν − F

2
Fμ
α Fα

ν . (6)

2.4 Weyl Tensor

It is possible to decompose the Riemann curvature tensor
Rαβμν in its irreducible parts: the conformal Weyl tensor
Wαβμν and its traces

Rαβμν = Wαβμν + Mαβμν − 1

6
Rgαβμν,

where

2Mαβμν = Rαμgβν + Rβνgαμ − Rανgβμ − Rβμgαν.

The Weyl tensor has only ten independent components.
The remaining ten components of Riemann tensor are pro-
vided by the Ricci tensor Rμν = Rα

μαν and the scalar
curvature R = Rα

α .

The ten independent components of Weyl tensor are sep-
arated into its electric and magnetic parts according to any
observer endowed with velocity vμ. Indeed, we write

Eαβ = −Wαμβνv
μvν, and Hαβ = −W ∗

αμβνv
μvν.

Thus, electric and magnetic tensors are symmetric, trace-
less, and orthogonal to the observer:

Eμν = Eνμ, Eμνv
μ = 0 and Eμνg

μν = 0

and

Hμν = Hνμ, Hμνv
μ = 0 and Hμνg

μν = 0.

From these symmetries, it follows that the dual operation
is independent of the indices pair of Weyl tensor in which
it is applied. Note that this is not the case for the Riemann
tensor, for which the condition of independence, that is,

R∗
αβμν = Rαβ

∗
μν

occurs only in the Einstein spaces where

Rμν = R

4
gμν.

2.5 Conformal Transformation

A conformal transformation is the map from the metric
gμν(x) into g̃μν(x) defined by

g̃μν (x
α) = �2 (xα) gμν (x

α),

where �2(xα) is an arbitrary function. Then,

g̃μν (xα) = �− 2 (xα) gμν (xα),

which yields for the affine connection

�̃α
μν = �α

μν + 1

�

(

�,μδ
α
ν + �,νδ

α
μ − �,λg

αλgμν
)

and the curvature tensor

R̃αβ
μν = �− 2 Rαβ

μν − 1

4
δ[α [μ Mβ ]

ν ]

where Mα
β ≡ 4�− 1 (�− 1), β; λgαλ − 2 (�− 1), μ (�

− 1), ν
gμνδαβ . The squared brackets mean anti-symmetrization.
Contracting the indices of the above expression, we obtain
the transformations of the Ricci tensor and the scalar curva-
ture R, respectively

R̃α
μ = �− 2 Rα

μ − 1

2
Mα

μ − 1

4
Mδαμ

and

R̃ = �− 2[R + 6�− 1 �� ].
Finally, collecting these transformations, we find the

invariance of the Weyl conformal tensor

W̃α
βμν = Wα

βμν.
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2.6 Projection Tensor

Let vμ represent a normalized congruence in a given
space-time endowed with a metric gμν . The corresponding
projector hμν is defined by

hμν ≡ gμν − vμ vν. (7)

It projects quantities defined in space-time in the rest-
frame of vμ. Indeed, it satisfies:

hαβh
β
ν = hαν, and hαβv

β = 0.

Note that hμν is a symmetric tensor hμν = hνμ. We can
then write the distance from two arbitrary points P and Q as

ds2(P,Q) = gμνdx
μdxν = hμνdx

μdxν + (vμdx
μ)2.

2.7 Kinematical Parameters

Let us consider a congruence of curves � that can be
assigned by parameters si on each curve that will be called
its proper time. We denote the displacement vector �z, the
vector connecting two curves of � assigned by the same
value of s.

Defining the tensor Qαβ ≡ hα
μhβ

ν vμ;ν and decompos-
ing it into its irreducible components, we set

Qαβ = θ

3
hαβ + σαβ + ωαβ,

where

θ ≡ hαλvα;λ = vα;α
is the expansion factor, the traceless symmetric part

σαβ ≡ 1

2
h
μ

(α h
λ
β)vμ;λ − 1

3
θhαβ

is the shear tensor and the anti-symmetric part

ωαβ ≡ 1

2
h
μ
[α h λ

β]vμ;λ

is the vorticity tensor.
The parentheses denote symmetrization. It follows that

σμνv
μ = 0 and ωμνv

μ = 0. We can then write

vμ ; ν = Qμν + aμ vν = θ

3
hμν + σμν + ωμν + aμ vν,

where the acceleration is defined by aμ ≡ v̇μ = vμ;νvν .
From independent projections of (1), we can obtain the
evolution equations for the kinematical quantities [148]. In
particular, the evolution of the expansion coefficient θ is
given by the Raychaudhuri equation

θ̇ + θ2

3
+ 2(σ 2 − ω2) − aα;α = Rμνv

μvν.

Particular situation for this equation will be used after-
wards when we discuss analogue models of gravity.

2.8 The Energy-Momentum Tensor

The energy-momentum tensor can be written in terms of a
fluid by the choice of a particular frame represented by an
observer endowed with a four-velocity field vμ, yielding the
decomposition

Tμν = ρ vμ vν − p hμν + q(μ vν) + πμν ,

where the ten independent quantities ρ, p, qα , and παβ are
obtained through the projections of Tμν onto vα and the
space orthogonal to it.

Explicitly, the scalars ρ and p (energy density and pres-
sure) are defined by ρ = T αβ vα vβ and p = − 1

3 hαβ T
αβ ,

the heat flux is qα = hαβ vγ Tβγ , and the traceless symmet-
ric anisotropic pressure is παβ = hαμ hβν Tμν + p hαβ .

2.9 The Formula of the Determinant

The determinant of the matrix representation of a mixed ten-
sor T = T α

β may be calculated through its characteristic
polynomial due to the Cayley-Hamilton theorem:

detT=−1

4

[

Tr(T4)− 4

3
Tr(T)Tr(T3)− 1

2

(

Tr(T2)
)2

+ (Tr(T))2 Tr(T2) − 1

6
(Tr(T))4

]

. (8)

2.10 Dirac Spinors and the Clifford Algebra

We will deal here with fields � that are four-components
Dirac spinors [70]. The vector and axial currents are con-
structed with � namely,

Jμ ≡ �γμ�, and Iμ ≡ �γμγ5�.

For completeness, we recall � ≡ �+γ 0, where �+ is
the complex conjugate of �. The Clifford algebra is the
algebra of the Dirac matrix γμ defined by its basic property

γμ γν + γν γμ = 2ημν 1 (9)

where 1 is the identity of the Clifford algebra. We use the
following notation

γ 0 =
(

I2 0
0 − I2

)

, γk =
(

0 σk
−σk 0

)

, γ5 =
(

0 I2

I2 0

)

,

where I2 represents the 2 × 2 identity matrix and σk are the
Pauli matrices, which satisfy σi σj = i εijk σk + δij , and we
set

σ1 =
(

0 1
1 0

)

, σ2 =
(

0 −i

i 0

)

, σ3 =
(

1 0
0 −1

)

.

The γ5-matrix anti-commutes with all γμ and is defined
in terms of them by

γ5 = i

4! η
αβμν γαγβγμγν = iγ0γ1γ2γ3,
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where the second equality is valid in a Cartesian coordinate
system in the Minkowski background. The γ5 is Hermitian
and the others γμ obey the self-adjoint relation

γ+
μ = γ 0γμγ

0.

Any spinor can be decomposed into its left- and right-
handed parts through the identity

� = �R + �L = 1

2
(1 + γ5)� + 1

2
(1 − γ5)� (10)

Then

�L �L = 0, and �R �R = 0.

2.11 Pauli-Kofink Identity

The properties needed to analyze nonlinear spinors are con-
tained in the Pauli-Kofink (PK) relation. These are identities
that establish a set of relations concerning elements of the
four-dimensional Clifford algebra. The main property states
that, for any element Q of this algebra, the PK relation
ensures the validity of the identity:

(�Qγλ�)γ λ� = (�Q�)� − (�Qγ5�)γ5�. (11)

for Q equal to 1, γ μ, γ5, γ μγ5, and σμν ≡ (γ μγ ν −
γ νγ μ)/2. As a consequence of this relation, we obtain two
extremely important facts: (i) the norm of the currents Jμ
and Iμ have the same value and opposite sign; (ii) vectors
Jμ and Iμ are orthogonal. Thus, Jμ is a time-like vector and
Iμ is space-like.

Pauli-Kofink formula also implies some identities which
will be used later on:

Jμ γ
μ � ≡ (A + iBγ5)�, (12a)

Iμ γ
μ γ5 � ≡ −(A + iBγ5)�, (12b)

Iμ γ
μ � ≡ (A + iBγ5) γ5�, (12c)

Jμ γ
μ γ5 � ≡ −(A + iBγ5) γ5�, (12d)

where A ≡ � � and B ≡ i� γ5�. Note that both quantities
A and B are real.

2.12 Dirac Dynamics

We shall deal with two dynamics for the spinor fields: a lin-
ear and a nonlinear. For the linear case, we take Dirac theory

iγ μ∂μ � − μ� = 0, (13)

where μ is the mass. We use the conventional units where
� = c = 1. The corresponding Lagrangian is

L = LD−μ �̄ � =
(

i

2
�̄γ μ∂μ� − i

2
∂μ�̄γ μ�

)

−μ �̄ �

(14)

Note that on-mass-shell Dirac Lagrangian vanishes
L(oms) = 0. From the decomposition in a right �R and
left-handed �L helicity, it follows that the mass-term mix
both helicities:

iγ μ∂μ �L − μ�R = 0, (15)

iγ μ∂μ �R − μ�L = 0. (16)

2.13 Heisenberg Dynamics

The Heisenberg self-interaction Lagrangian:

L = LD − V (�). (17)

The potential V is constructed with the two scalars A and B :
V = s

(

A2 + B2
)

, (18)

where s is a real parameter of dimension [length]2. The
corresponding equation of motion is

iγ μ∂μ �
H − 2s (A + i Bγ5)�

H = 0. (19)

Correspondingly, we have

i∂μ �
H
γμ + 2s �

H
(A + iBγ5) = 0 (20)

The Heisenberg potential VH can be written in an equiva-
lent and more suggestive form in terms of the associated cur-
rents Jμ and Iμ. As a direct consequence of Pauli-Kofinki
identities, Heisenberg potential V is nothing but the norm of
the four-vector current Jμ, that is A2 + B2 = Jμ Jμ. Note
that on-mass-shell, Heisenberg Lagrangian takes the value
of its potential L(oms) = VH .

2.14 Gauge Invariance

The dynamics displayed by both Dirac and Heisenberg
equations of motion are invariant under the map

˜� = S �, (21)

where S is a unitary matrix satisfying S−1S,μ = cμ I . From
Noether’s theorem, this imply that the current Jμ is con-
served. When the transformation S is space-time dependent,
one has to introduce a modification on the derivative as
much the same as it occurs for tensors in arbitrary coordi-
nate transformation when a covariant derivative is defined.
We shall deal with this spinor covariant derivative latter on.

2.15 Chiral Invariance

Chiral transformation is defined by the map

� ′ = γ5 �.

Dirac equation is invariant under this map only for mass-
less neutrino equation. On the other hand, Heisenberg
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equation is invariant under chirality. Indeed, we have, for
the conjugate spinor:

�
′ = −�γ5,

which implies

A′ = −A, and B ′ = −B

consequently the Lagrangian remains the same. Although
the constant s is not a “mass,” it provides the similar mixing
of Heisenberg spinors �L and �R. Indeed, we have

iγ μ∂μ �L − 2s (A − iBγ5)�R = 0 (22)

iγ μ∂μ �R − 2s (A + iBγ5)�L = 0 (23)

2.16 Current Conservation

Let us introduce an arbitrary parameter ε in the Heisenberg
equation for �

iγ μ∂μ � − 2s (A + i ε Bγ5)� = 0 (24)

and for �

i∂μ � γμ + 2s � (A + i ε Bγ5) = 0 (25)

We will now show that the vector current Jμ is con-
served for any value of ε, but the axial vector current Iμ is
conserved only for the Heisenberg equation when ε = 1.
Thus, multiplying by � (24) and by � (25) and adding these
results, it follows that indeed

∂μ J
μ = 0.

Let us now do the similar procedure by multiplying further
by a γ 5. We have, respectively:

i � γ μγ5∂μ� = 2s i (1 − ε)AB. (26)

and

i ∂μ� γμγ5� = 2s i (1 − ε)AB. (27)

It then follows the result that the axial current satisfies the
equation

∂μI
μ = 4s (1 − ε)AB. (28)

which shows that only in the case of Heisenberg choice (ε =
1) the axial current is conserved.

2.17 Weyl Integrable Space

We shall see that it is possible to provide a geometric for-
mulation of the non-relativistic quantum mechanics in de
Broglie-Bohm approach. For this, we need some mathe-
matical properties of the 3-D Weyl integrable space (WIS)
(which is called the quantum WIS or Q-WIS). Contrary to
the Riemannian geometry, which is completely specified by
a metric tensor, the Weyl space defines an affine geometry.
This means that the covariant derivative which is defined in

terms of a connection �m
ik depends not only on the metric

coefficients but also on a vector field fa(x). Latin indices
run from 1 to 3.

For instance, the covariant derivative of a given vector Xa

is

Xa ;b = Xa , b − �m
ab Xm. (29)

The non-metricity of the Weyl geometry implies that
rulers, which are standards of length measurement, changes
while we transport it by a small displacement dxi. This
means that a ruler of length l will change by an amount

δ l = l fa dxa. (30)

As a consequence, the covariant derivative of the metric
tensor does not vanishes as in a Riemannian geometry but
instead it is given by

gab ; k = fk gab, (31)

which is the analogous of the 4-D equation (2.1). Using
Cartesian coordinates, it follows that the expression for the
connection in terms of the vector fk takes the form

�k
ab = − 1

2

(

δka fb + δkb fa − gab f
k
)

. (32)

The WIS case is provided by the condition that the vector
fi is a gradient of a function, i.e., fi ≡ f, i . This property
ensures that the length does not change its value along a
closed path
∮

dl = 0. (33)

As a matter of convenience, we define

f = −4 ln �. (34)

Then, the 3-D Ricci tensor is constructed with the affine
connection (32) and is explicitly given by

Rij = 2
�,ij

�
− 6

�,i�,j

�2
+ 2gij

[

∇2�

�
+ �∇�. �∇�

�2

]

.

The scalar of curvature R becomes

R = 8
∇2�

�
. (35)

3 Introduction

The first attempts to interpret the motion of the bod-
ies in classical mechanics geometrically, i.e., in terms of
geodesics, refer to the works of M. de Maupertuis [137], in
which the principle of least action was formulated for the
first time. The appearance of an effective geometry describ-
ing the path of bodies becomes even more evident with
Jacobi’s formulation of Maupertuis’ principle [121].



764 Braz J Phys (2015) 45:756–805

For the electromagnetism, such geometrical description
appeared only in 1923, when Gordon [88] made a semi-
nal suggestion to treat the propagation of electromagnetic
waves in a moving dielectric by a modification of the metric
structure of the background. He showed that the acceleration
of the photons inside a dielectric medium can be elimi-
nated by a procedure similar to the one made in GR, that
is, by changing the rules of distances in space and time
in the interior of the dielectric, at least in what concerns
its propagation. He proposed to interpret the propagation
of electromagnetic waves inside a moving dielectric as
geodesics not in the standard background geometry γμν , but
instead in the effective metric

gμν = γ μν + (εμ − 1) vμ vν, (36)

where ε and μ are constant parameters that characterize the
dielectric and vμ is the four-velocity of the material under
consideration (which is not necessarily constant). Later, it
was recognized that this interpretation could be used to
describe nonlinear structures even when ε and μ depend
on the intensity of the electromagnetic field [158] or more
complicated functions of the field strengths as we shall see
later on. In all these cases, the causal cone, describing the
propagation of photons is associated to an effective metric,
that does not coincide with the null-cone of the background
metric. The origin of this modification is due to the pres-
ence of the moving dielectric, which changes the paths of
the electromagnetic waves inside this medium and shall be
described in next sections. Before this, let us introduce a
more general question: could such particular description of
the electromagnetic waves in moving dielectrics be general-
ized for other cases, in which accelerated paths of arbitrary
bodies submitted to other kind of forces would be described
as geodesic motions in an associated metric? We shall see
that the answer is affirmative and such kinematical map
depends only upon the acceleration of the body.

This method allows us to undertake the geometrization
of any force in the sense that arbitrary accelerated body in
a given metric substratum γμν is equivalently described as
geodesic motion in an effective geometry ĝμν . We shall call
this proposal as the principle of Metric Relativity (MR).
When the acceleration is produced by gravity, this procedure
led to the geometrization of the gravitational field as it was
done by GR. According to the MR, the effects of the particle
acceleration caused by any kind of force can be described
as geodesics on the associated metric ĝμν. In the case of
gravity, this should be identified with Einstein’s approach.

4 The Principle of Metric Relativity

The principle of Metric Relativity (MR) states that
the motion of an arbitrarily accelerated body in a flat

Minkowski space-time can be equivalently described as
free of any force and following a geodesic in an associ-
ated geometry [145], which we call dragged metric (DM).
Although the analysis we present in this section can be dealt
with any underlying metric structure, that is, flat or curved
space-time, we limit this section to the case of process
occurring in the flat Minkowski background. Its generaliza-
tion for arbitrary curved background is a direct task, and we
will present some examples of it in a later section.

Let us start with the case in which the acceleration vector
aμ is the gradient of a function, that is, the force acting on
the body under observation comes from a potential. We set

aμ = ∂μ�. (37)

Using the freedom in the definition of the four-vector vμ

of the body, we set ημνvμvν = 1 and the acceleration is
orthogonal to the velocity aμ v

μ = 0.
Motivated by Gordon’s approach, where the effective

metric depends on the external vector field associated to the
dielectric motion, here we consider that the associated DM,
for any congruence of curves �(v), takes the form

ĝμν = ημν + β vμ vν. (38)

The covariant expression is

ĝμν = ημν − β

(1 + β)
vμ vν, (39)

in order to have δ
μ
ν = ĝμαĝαν . The covariant derivative

of an arbitrary vector Sμ in this metric is defined in the
standard way

Sα;μ = Sα,μ +̂�α
μν S

ν,

where the Christoffel symbol is constructed with metric
(38). We set v̂μ ≡ ĝμνvν = √

1 + βvμ. In order to identify
this congruence generated by v̂μ to the one associated with
vμ, we require that

√
1 + β be constant along the motion,

that is vμ ∂μβ = 0. The congruence �(̂v) will be geodesic if

v̂μ,ν v̂
ν −̂�ε

μν v̂ε v̂
ν = 0.

Note that the hat symbol denotes objects defined in the
metric ĝμν .

The description of an accelerated curve in a flat space-
time as a congruence of geodesics in the DM can be
rewritten as
(

vμ,ν −̂�ε
μν vε

)

vν = 0. (40)

Once the acceleration in the background is defined by aμ =
vμ,ν v

ν and using Eq. (37), the condition of geodesics in the
DM takes the form

∂μ� = ̂�ε
μν vε v

ν.

The rhs can be written as

̂�ε
μν vε v

ν = 1 + β

2
vα vν ĝαν,μ.
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Using (38) and (39), we obtain that the coefficients of the
DM are given in terms of the acceleration

aμ + 1

2
∂μ ln(1 + β) = 0.

Thus, we have proved the following

Lemma 1 Given a congruence of accelerated curves �(v)
in Minkowski space-time driven by a potential, aμ = ∂μ�,

it is always possible to construct an associated DM of the
form

ĝμν = ημν + β vμ vν, (41)

such that the paths of the curves become geodesics in this
DM and

1 + β = e−2�.

Let us compare this method to the original proposal of the
GR for the description of the motion of a body around the
weak gravitational field of the sun: they provide the same
metric. In other words, as far as we limit to weak fields, the
motion of test particles in the framework of GR is the same
as in the DM formulation: the accelerated paths are mapped
into geodesics of the DM.

The GR Description

• Assume that only the v0 component matters and the
other terms vi are very small in comparison v0.

• The acceleration suffered by this velocity field is small
and does not depend on time.

• Define a metric gμν ≈ ημν + γμν; then GR states
that the body follows a geodesic in this metric. At this
regime, the only component of γμν that enters in the
geodesic equation is γ00 ≡ �.

• � satisfies the Laplace equation ∇2� = 0.

The DM Description

• Assume that only the v0 component matters and the
other terms vi are very small in comparison v0.

• The acceleration suffered by this velocity field is small
and does not depend on time.

• The above Lemma states that the body follows a
geodesic in the metric gμν ≈ ημν + β vμ vν, which
yields β = exp (−2�) − 1 and g00 = � in the weak
field limit.

• � satisfies the Laplace equation ∇2� = 0.

In respect to the motion of individual bodies, we see that
the distinction from DM to GR concerns the independence
of the geometry on the actual motion of the body once in
GR the geodesics are constructed in a universal metric.

4.1 Kinematical Parameters in the DM

Let us evaluate the modification that the passage from vμ to
v̂μ implies for the kinematical parameters. First, we set for
the projector the formula (see (7))

̂hμν = ĝμν − v̂μ v̂ν . (42)

Thus,̂hμν = hμν. For the expansion factor

̂θ = 1√−ĝ
∂μ(
√−ĝ v̂μ)

using

√−ĝ =
√−η

(1 + β)1/2

we obtain the valuêθ = √
1 + β θ.

For the shear tensor, we get

σ̂μν = √1 + β σμν

and for the vorticity

ω̂μν = ωμν√
1 + β

.

This procedure of eliminating the acceleration modifies the
remaining kinematical parameters only by a multiplicative
factor.

Using the formula for the determinant of ĝμν and a
convenient coordinate system, we can rewrite the DM as

ĝμν = ημν − (1 + ĝ) vμ vν.

We can equivalently state that the potential of the external
force measures the logarithm of the determinant of the DM,
that is � = ln

√−ĝ.

4.2 The Curvature of the DM

In case the background metric is not flat or if we use an
arbitrary coordinate system, the connection is given by the
sum of the corresponding background one and a tensor, that
is

̂�ε
μν = �ε

μν + Kε
μν. (43)

In the case of the Minkowski background, a direct calcula-
tion gives for the connection the form

̂�ε
μν = Kε

μν = vε (aμ vν + aν vμ) − aε vμ vν, (44)

where we have considered Lorentzian coordinates and the
particular case where the congruence has no expansion, no
shear, and no vorticity, that is vμ,ν = aμ vν just to simplify
the calculations. Then, Kε

με = aμ. The contracted Ricci
curvature has the expression

̂Rμν = aμ,ν − aμ aν + (aλ aλ + aα,α) vμ vν, (45)
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Noting that âμ = aν q̂
μν = aμ, it follows that aμ aμ =

aμ aν η
μν = aμ aν q̂

μν. The scalar of curvature ̂R =
̂Rμν q̂

μν is

̂R = (2 + b) aα,α. (46)

These expressions can be rewritten in a covariant way by
noting that

aμ,ν ≡ aμ;ν +̂�ε
μν aε,

which yields

̂Rμν = aμ ; ν − aμ aν − (aλ aλ − aα;α) vμ vν, (47)

and for the scalar curvature ̂R the form

̂R = (2 + b) (aα;α − aλ aλ). (48)

4.3 Classical Dynamics

A curious consequence of the above calculations can guide
us in the possible equations of motion for the classical long-
range fields. Indeed, let us consider a congruence of curves
xμ = xμ(s) for an arbitrary parameter s. Restricted to the
case in which the congruence has no expansion (θ = 0), no
shear (σμν = 0), and no vorticity (ω = 0), the remaining
component of the derivative of the velocity field, the accel-
eration, is given by the gradient of a function as aμ = ∂μ�.

Thus, we have vμ,ν = ∂μ� vν. Using the equation of the
propagation of the expansion

θ̇ + θ2

3
+ 2 σ 2 − 2ω2 − aα;α = Rμν v

μ vν

in the Minkowski background, it follows that ∇2� = 0,
which is the Laplace equation for the Newtonian potential.

In the next sections, we present some applications of this
procedure. We will apply, for instance, the approach of the
construction of the DM to obtain in a new perspective the
propagation of electromagnetic rays inside a moving dielec-
tric and in the case of a scalar field. Before this, however,
let us consider a general case of accelerated paths.

5 Geometrizing Accelerated Paths

We turn now to the case in which the norm of the vector is
not a constant of motion, that is N ≡ vμ vν η

μν 	= 1. We
restrict our analysis in this section to the case in which the
congruence �(v) has no vorticity and set vμ = ∂μχ. Then
for the acceleration, it follows

aμ = vμ,ν v
ν = 1

2
∂μN.

The associated DM is given again by the formula

ĝμν = ημν + β vμ vν, (49)

where we impose that the vector v̂μ = vμ is normalized:
v̂μ v̂

μ = v̂μ v̂ν ĝ
μν = 1. Then, it follows that

1 + β N = 1

N
.

The equation of the geodesics in the DM takes the form
(

v̂μ,ν −̂�ε
μν v̂ε

)

v̂ν = 0, (50)

which can be rewritten as

1

N
vμ,ν v

ν − 1

2
ĝαβ,μ v̂

α v̂β = 0

and, after a direct calculation, yields nothing but the previ-
ous condition

aμ = 1

2
∂μN.

This ends the proof of the following lemma:

Lemma 2 For any congruence �(v) of accelerated curves
in Minkowski space-time such that

(vμ,ν − vν,μ) v
ν = 0

and vμ vν η
μν = N , it is always possible to construct an

associated DM of the form

ĝμν = ημν + β vμ vν,

such that the paths of the curves become geodesics in this
geometry. The parameters of the metric satisfy the condition
N(1 + β N) = 1.

We can then rewrite the metric under the form

ĝμν = ημν + (1 − N)

N2
vμ vν. (51)

Note that the origin of the acceleration is not taken into
account. For a unified treatment of the body and the source
of its acceleration, we should look into the description of
the field responsible for this acceleration. Could this field of
force to be described in this space endowed with a DM too?
We shall see that this is indeed possible.

5.1 General Case

In the precedent sections, we limited our analysis to the
case in which the acceleration is given by a unique func-
tion. Let us now pass to more general situation. In order to
geometrize any kind of force, we must deal with a larger
class of geometries that are constructed not only with the
normalized velocity vμ but also in terms of its acceleration
aμ. The most general form of DM that allows the descrip-
tion of accelerated bodies as true geodesics in a modified
geometry has the form

ĝμν = ημν + b vμ vν + maμ aν + na(μ vν), (52)
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where we denoted a(μ vν) ≡ aμ vν + aν vμ. The three
arbitrary parameters b,m, n are related to the three degrees
of freedom of the acceleration vector. The corresponding
covariant form of the metric is given by

ĝμν = ημν + B vμ vν + M aμ aν + Na(μ vν), (53)

in which B,M,N are given in terms of b,m, n by

B = − b (1 − ma2) + n2 a2

(1 + b) (1 − ma2) + n2 a2
,

M = n2 − m(1 + b)

(1 + b) (1 − ma2) + n2 a2
,

N = − n

(1 + b) (1 − ma2) + n2 a2
,

where a2 = −aμa
μ. In this case, the equation that general-

izes the geodesic condition (40) takes the form

aμ = 1

2

[

(1 + b) vλ vν + n aλ aν
]

(ĝλμ , ν+ĝλν , μ−ĝμν , λ).

(54)

This equation can be cast in the following formal expression

aμ = − b,μ

2(1 + b)
− nωμν a

ν, (55)

where ωμν ≡ v[μ,ν] − a[μ vν] is the vorticity tensor. Solving
this equation for these functions provides the most general
expression for any acceleration.

With these results, we can transform the path of any par-
ticle submitted to any kind of force as a geodetic motion
in the dragged metric. We can understand this method as
a relativistic extension of the d’Alembert principle, corre-
sponding to all types of motion, i.e., the acceleration is
geometrized through the DM approach.

5.2 DM’s Unchange Orthogonal Directions

Lemma 3 Let Zμ be tangent to a geodesic curve in space-
time embodied with metric gμν and consider ĝμν as the
DM for a congruence of curves vμ. If vectors Zμ and vμ

are orthogonal in the sense of gμν , then Zμ will also be
geodesic in the DM ĝμν .

The proof of this lemma is straightforward. Set
ZμZνgμν = 1 and define � = Zμvνg

μν . Consider ̂Zμ =
λZμ, then

̂Zμ = (ημν + b vμ vν
)

λZν = λ (Zμ + b�vμ).

Then, for � = 0, it follows that λ = 1.̂Zμ will be a geodesic
in the DM under the condition Zμ,ν Z

ν −̂�ε
μν Zε Z

ν = 0.
Now, using the expression of the Christoffel symbol in

terms of ĝμν , we obtain

̂�ε
μν Zε Z

ν = −Zα Zν

[

b vα v
ν

2 (b + 1)

]

, μ

= 0.

Thus if Zμ is geodesic in the metric gμν , it will also be
in the DM, which proves the lemma.

5.3 Distinct Accelerated Particles in the Same Dragged
Metric

In this section, we face the problem to encounter other
accelerated vector fields that satisfy the same requirements
to follow a geodesic motion in the same DM that a pre-
viously given vector field. For it, consider an accelerated
congruence vμ in Minkowski spacetime following a geode-
tic motion in the metric (52). We have shown that aμ =
∂μ�−nωμνa

ν, where 1+b = e−2� . Note that the intrinsic
properties (mass, charge, etc.) of the particle represented by
vμ are contained in � and n.

Now, consider another four-vector ṽμ such that it follows
a geodetic motion in a DM

q̂
μν

(ṽ)
= ημν + b̃ ṽμṽν . (56)

For convenience, suppose that ṽμṽμ = 1 and ṽμ,ν = ãμṽν .
This last assumption implies that ãμ = ∂μ�̃, where �̃ con-
tains all information about kinematical features of ṽμ. We
then ask if it is possible that these congruences vμ and ṽμ

could agree with the same metric structure. In principle, we
suppose that ṽμ lies on the plane generated by vμ and aμ,
i.e.,

ṽμ = p vμ + q aμ, (57)

where p and q are arbitrary functions. As we set ṽμṽμ = 1,
this restricts the coefficients p and q to p2 − q2a2 =
1. Therefore, from the equation of motion for ṽμ, i.e.,
ṽμ,ν ṽ

ν = ãμ, we obtain

ãμ=(p ṗ+q p′+p q a2)vμ+
[

2−p2+ p

q a2
(p ṗ + q p′)

]

aμ.

(58)

where ṗ ≡ p,μv
μ and p′ ≡ p,μa

μ. Now, we look for the
case ãμ ∝ aμ which implies that pṗ + qp′ + pqa2 = 0.
This assumption is made in order to answer if it is possible
that different particles subjected to the same force on the
background can follow a geodetic motion in the same DM.
Under these considerations, (58) yields

ãμ = 2(1 − p2)aμ. (59)

Equation (59) implies that

∂μ�̃ = 2(1 − p2)(∂μ� − nωμνa
ν). (60)

Note that the potential �̃ must satisfy this equation
in order that the acceleration of vμ be proportional to the
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acceleration of ṽμ. If they follow geodesics in the same
geometry, then an extra proposition must be satisfied

q̂
μν

(ṽ)
= q̂μν =⇒ b̃ ṽμṽν = b vμvν + maμaν + n a(μvν).

(61)

Substituting (57) into (61), we obtain

p =
√

e−2�−1
e−2�̃−1

,

q = n
[

(e−2� − 1)(e−2�̃ − 1)
]−1/2

,

m = n2

e−2�−1
.

(62)

Remark that we still have an arbitrariness in the choice of n.
Once it is fixed, then we can uniquely determine the DM in
which vμ and ṽμ follow geodesics. This could be the case
of particles in a electromagnetic field with the same charge-
mass ratio.

All these analysis concerns the map that relates acceler-
ated paths of a given background metric, Minkowski or not,
into geodesics of the modified DM. It is worth to note that
this map is independent on the other kinematical parame-
ters of the congruence. Indeed, an arbitrary congruence of
curves are characterized by ten parameters: the accelera-
tion aμ, the expansion θ, the shear σμν , and the vorticity
ωμν. The most general expression for the derivative of vμ
is provided by (see the definition of these quantities in
Section 1)

vμ ,ν = θ

3
hμν + σμν + ωμν + aμ vν.

in which we are considering the background metric as
Minkowski just for simplicity. It can be easily generalized
for arbitrary Riemannian geometry. The condition to map an
arbitrary accelerated curve to a geodesic in a DM is given by
(40), where the important term to be analyzed is ̂�ε

μν vε v̂
ν,

that is

̂�ε
μν vε v̂

ν =
(

1 + b

2

)

vλ vν
(

ηλν − b

(1 + b)
vλ vν

)

, μ

.

Using the properties of the kinematical quantities entering in
the expression of the derivative of vμ it follows that indeed
only the acceleration survives in this formula.

5.4 Accelerated Particles in Rotating Frames in
Minkowski Space-Time

Let us consider a simple example concerning the accel-
eration of a body in flat Minkowski spacetime written in
the cylindrical coordinate system (t, r, φ, z) to express the
following line element

ds2 = a2[dt2 − dr2 − dz2 + g(r)dφ2 + 2h(r)dφdt], (63)

where a is a constant. We choose the following local tetrad
frame given implicitly by the 1-forms

θ0 = a(dt + hdφ),

θ1 = adr,

θ2 = a�dφ,

θ3 = adz,

(64)

where we define � = √h2 − g. The only non-identically
zero components of the Riemann tensor RA

BCD in the
tetrad frame are

R0
101 = 1

4a2

(

h′

�

)2

= R0
202,

R0
112 = − 1

2a2

(

h′′

�
− h′�′

�2

)

,

R1
212 = 1

a2

[

�′′

�
− 3

4

(

h′

�

)2
]

, (65)

where ( ′ )means derivative with respect to the radial coordi-
nate r. The equations of general relativity for this geometry
have two simple solutions that we shall analyze below.

In the case of RA
BCD=0, we get h′ = 0; �′′ = 0.

Solving these equations, we find h ≡ const. and � ≡ ωr,

where ω is a constant. Therefore, (63) takes the form

ds2 = a2[dt2 − dr2 − dz2 + (h2 − ω2r2)dφ2 + 2h dφdt.

This metric corresponds to the Minkowski one with a
topological defect in the angular coordinate.

If we consider the observer field

vμ = 1

a
√
h2 − ω2r2

δ
μ
2 ,

with h2 − ω2r2 > 0, describing a closed time-like curve,
this path corresponds to an acceleration vector given by

aμ =
(

0,
ω2r

(h2 − ω2r2)
, 0, 0

)

.

This means that aμ = ∂μ�, where

2� = − ln(h2 − ω2r2).

We are in a situation similar to the previous lemma since
the acceleration is a gradient. The parameter b of the DM,
given by the expression (63), can be written down as

1 + b = h2 − ω2r2,

and for the DM, we get

ds2

a2
= ω4r4 − ω2r2h2 + 1

(h2 − ω2r2)2
dt2 + dφ2 + 2h

h2 − ω2r2
dφ dt

−dr2 − dz2.

Note that the accelerated closed time-like curves (CTC)
in the original background are mapped into closed time-like
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geodesics (CTG) in the DM. If one calculates the scalar cur-
vature of this metric, it is possible to see that there exists a
real singularity in r = h/ω and that the 0 − 0 component of
the metric changes sign at

ω2 r2± = h2 ± √
h4 − 4

2
.

5.5 Accelerated Particles in Curved Space-Times

In this section, we will show that the above method of elim-
inating the external force by a change on the underlying
geometry is a very general procedure and can be realized
in arbitrary background. We will consider some specific
examples in certain curved space-times that are solutions
of the equation of motion of general relativity. We choose
three well-known geometries: Schwarzschild, Gödel uni-
verse, and the Kerr solution in which accelerated particles
have very peculiar properties. In these Riemannian mani-
folds, we analyze some examples of accelerated paths that
will be described as geodesics in the associated DM.

5.5.1 Schwarzschild Geometry

We start with the Schwarzschild metric in the (t, r, θ, ϕ)

coordinate system

ds2 =
(

1 − rh

r

)

dt2− 1
(

1 − rh
r

) dr2−r2(dθ2+sin2 θ dϕ2),

and choose the trajectory described by the four-velocity

vμ =
√

1 − rh

r
δ0
μ.

The corresponding acceleration is

aμ =
(

0,− rh

2(r2 − r rh)
, 0, 0

)

.

In this case, the acceleration is gradient of the function �

given by

� = − 1

2
ln
(

1 − rh

r

)

,

where the DM coefficient is b = −rh/r, and, therefore, the
DM takes the form

̂ds
2 = dt2 − 1

(1 − rh
r
)
dr2 − r2(dθ2 + sin2 θ dϕ2).

Straightforwardly, the only non-vanishing Ricci tensor com-
ponents of this metric are

R1
1 = −2R2

2 = −2R3
3 = rh

r3
.

According to GR, the energy-momentum tensor corre-
sponding to this DM has only an anisotropic pressure term
(which is proportional to the components C0μ0ν of the con-
formal tensor of this metric). Such fluid has no physical

meaning because the energy density is identically zero. In
spite of the apparent singularity at r = rh, all Debever
invariants are finite everywhere except at the origin r = 0.

5.5.2 Gödel’s Geometry

Let us now turn our analysis to the Gödel geometry [86].
In the cylindrical coordinate system, this metric is given by
(63), where a is a constant related to the vorticity a = 2/ω2

and

h(r) = √
2 sinh2 r, and g(r) = sinh2 r(sinh2 r − 1).

For the sake of completeness, we note the nontrivial con-
travariant terms of this metric are

g00 = 1 − sinh2 r

a2 cosh2 r
,

g02 =
√

2

a2 cosh2 r
, (66)

g22 = − 1

a2 sinh2 r cosh2 r
.

Previously, it was pointed out the a-causal properties of a
particle moving into a circular orbit around the z-axis with
four-velocity [160]

vμ =
(

0, 0,
1

a sinh r
√

sinh2 r − 1
, 0

)

.

This path corresponds to an acceleration given by

aμ =
(

0,
cosh r [2 sinh2 r − 1]
a2 sinh r [sinh2 r − 1] , 0, 0

)

.

This means that aμ = ∂μ�, where

� = − ln(sinh r
√

sinh2 r − 1).

We are again in the situation where the acceleration is a
gradient. Therefore, the parameter of the DM is given by

1 + b = sinh2 r(sinh2 r − 1).

The DM has the following expression

̂ds
2

a2
= 3 − sinh4 r

(sinh2 r − 1)2
dt2+dφ2+2

√
2

sinh2 r − 1
dφ dt−dr2−dz2.

From the analysis of geodesics in Gödel’s geometry, the
domain r < rc where sinh2 rc = 1 separates the causal from
the non-causal regions of the spacetime. This is related to
the fact that a geodesic that reaches the value r = 0 will be
confined within the domain �i defined by the region 0 <

r < rc [149]. However, the gravitational field is finite in the
region r = rc. Nothing similar happens in the DM, since at
sinh2 r = 1 there exists a real singularity in the DM. Only
the exterior domain is allowed. This means that for this kind
of accelerated path in Gödel geometry, the allowed domain
for the DM is precisely the whole non-causal region.
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5.5.3 Kerr Metric

Let us turn now to the DM approach in the case the
background is the Kerr metric. In the Boyer-Lindquist coor-
dinate system, this metric is given by

ds2 =
(

1− 2Mr

ρ2

)

dt2− ρ2

�
dr2−ρ2dθ2 + 4Mra sin2 θ

ρ2
dtdφ

−
[

(r2+a2) sin2 θ+ 2Mra2 sin4 θ

ρ2

]

dφ2,

where � = r2 +a2 −2Mr and ρ2 = r2 +a2 cos2 θ . On the
equatorial plane (θ = π/2) consider the following vector
field

vμ =
(

0, 0, 0,
r

√−(r2 + a2)2 + a2�

)

.

This path corresponds to an acceleration given by

aμ =
(

0,− r3 − Ma2

r4 + r2a2 + 2Mra2
, 0, 0

)

.

This means that aμ = ∂μ�, where

2� = − ln

[

−
(

r2 + a2 + 2Ma2

r

)]

.

Over again, we choose an accelerated path that can be
represented by a gradient. The parameter b is given by

1 + b = −
(

r2 + a2 + 2Ma2

r

)

,

and the DM, on the equatorial plane, takes the form

̂ds
2

a2
= 1

(1 + b)2

(

1 − 2M

r
− b

4M2a2

r2

)

dt2

+dφ2 + 4Ma

(1 + b)r
dtdφ − r2

�
dr2.

These last cases (Gödel and Kerr metrics) show a very
curious and intriguing property: the accelerated CTC’s
at their respective metrics are transformed into geodesic
curves, that is CTG’s. Moreover, the DMs display a real
singularity excluding the causal domain in both cases.

6 Accelerated Photons in Moving Dielectrics

The suggestion to transform an accelerated path in
Minkowski background into a geodesics in an associated
curved space comes from the analysis of the seminal work
of Gordon [88]. The description of this procedure becomes
simpler and transparent using the Hadamard’s method
[94, 208]. This will allow us to have a deep idea of Gor-
don’s approach and will enlighten more complex cases that
appear when we treat nonlinear dielectrics. This method
will be used also in the next sections for the analysis of

photon propagation in nonlinear electrodynamics. A worth-
while application of the analysis of the modification of
the geometry to deal with photon propagation inside the
medium has been called “mimic gravity.” This means to
find specific electromagnetic configurations such that the
photon propagation is described by geodesics in geometries
that are identical or at least similar to specific solutions of
GR. We shall deal in particular with two cases that con-
cern spatially homogeneous and isotropic cosmology and
the rotating Gödel universe.

6.1 A Short Overview on Hadamard’s Method

In the classical theory of hyperbolic partial differential
equations, the analysis of propagation phenomena is done
using a method that was developed by the French mathe-
matician Jacques Hadamard and concerns the study of dis-
continuities across some given surfaces [94, 208]. Accord-
ing to his method, wave propagation can be studied by
following the evolution of wave fronts, through which the
field is continuous, but some of its derivatives, in general,
are not. The method is sufficiently general to be applied to
in arbitrary dimensions D. Nevertheless, we will concentrate
here only in D = 4.

To be specific, let � be a discontinuity hyper-surface,
i.e., a definite boundary that clearly characterizes the field
disturbance and its surrounding field configurations in
space-time. Let � be defined by the equation

�(xμ) = 0. (67)

This surface locally outlines two regions 1 and 2 in space-

time. The discontinuity [f ]
∣

∣

∣

�
of a given space-time func-

tion f (xα) across � is defined as the limit

[f (x)] |� = lim
ε→0+

(

f (1)(x + ε) − f (2)(x − ε)
)

, (68)

where f (1) and f (2) are to be understood as the values of
the function f in the domains 1 and 2 respectively. The
basic idea of the method is to investigate the compati-
bility between some assumed field discontinuities and the
structure of a given partial differential equation. We start
by assuming that the field itself is continuous, but this is
not true for the highest order derivatives. Assuming, for
instance, that the first derivative is discontinuous across �,
i.e.,

[

f,α
]

∣

∣

∣

�
	= 0, (69)

Hadamard showed that the differentials of the function f in
both domains df (1) = ∂αf

(1)dxα and df (2) = ∂αf
(2)dxα
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have to be continuous. He then obtained the following
crucial result

[df ]
∣

∣

∣

�
= [∂αf ]

∣

∣

∣

�
dxα = 0 (70)

which means that [∂αf ]
∣

∣

∣

�
is orthogonal to the hypersur-

face. In other words, there exist a non-null scalar χ(x) such
that

[∂αf ]
∣

∣

∣

�
= χ(x)kα (71)

where kα ≡ ∂α� is the gradient of the surface � =
constant of discontinuity.

The type of discontinuity assumed depends on the order
of the differential equation under investigation. In the con-
text of second-order equations, derivatives of order D ≥ 2
will in general be discontinuous. When we have a disconti-
nuity of this type, we say that there exist a shock wave on
the surface �. These shocks are always present when the
fields are described by hyperbolic PDE’s. It is important to
stress that the discontinuities are propagated along the sur-
face � in a specific way that is determined by the equations
of motion.

At this point, it is instructive to show how the method
works in the context of Maxwell’s linear electrodynamics.
We assume that the electromagnetic field tensor Fμν is such
that

[Fμν]
∣

∣

∣

�
= 0, and [Fμν,λ]

∣

∣

∣

�
= fμν(x)kλ, (72)

where fμν is a non-null antisymmetric tensor. Evaluating
the discontinuities of Maxwell’s equations in vacuum

F
μν

;ν = 0 and ∗Fμν ;ν = 0 (73)

across �, we obtain respectively

f μνkν = 0. (74)

fμνkλ + fνλkμ + fλμkν = 0. (75)

Contracting (75) with kλ and using in (74), it results

gμνkμkν = 0 (76)

that is

gμν
∂�

∂xμ

∂�

∂xν
= 0 (77)

Taking the derivative of this expression and noting that kμ
is a gradient, it follows

kμ,λk
λ = 0. (78)

This result shows that the waves propagate through null
geodesics in the metric background.

6.2 Light Paths on Moving Dielectric: Generalized
Gordon Method

Apart from the Faraday tensor Fμν , let us define the
skew-symmetric object Pμν representing the electromag-
netic field inside the material medium also. These tensors
are expressed in terms of the field strengths Eμ and Hν and
field excitations Dμ and Bμ as follows

Fμν ≡ Eμ vν − Eν vμ + ημν
αβ vα Bβ,

Pμν ≡ Dμvν − Dν vμ + ημν
αβ vα Hβ,

where vμ is a given four-vector comoving with the dielec-
tric and ημν

αβ is the Levi-Civita tensor. We assume that the
electromagnetic properties of the medium are characterized
by the constitutive relations where

Dα = εα
ν Eν, Bα = μα

ν Hν,

where εα
ν and μα

ν are arbitrary tensors that depend on
(E,H). Consider Maxwell equations on dielectric media
[123] with permittivity ε and permeability μ that character-
ize the dielectric:

Pμν ;ν = 0, and ∗Fμν ;ν = 0. (79)

From now on, we take the background metric as flat
Minkowski space-time and assume that μ ≡ μ0 is a con-
stant and ε = ε(E), where E ≡ √−Eα Eα and Eα is
the electric field. It is straightforward to generalize these
equations to arbitrary curved space-time. Indeed, suppose
an observer with velocity vμ co-moving with the dielectric
and such that vμ;ν = 0. Then, (79) written in terms of the
displacement vectors Dμ and Bμ become

Dμ;ν vν − Dν ;ν vμ + ημναβ vα Hβ;ν = 0,

Bμ;ν vν − Bν ;ν vμ − ημναβ vα Eβ;ν = 0.
(80)

The projection with respect to vμ yields the four inde-
pendent nonlinear equations of motion describing the elec-
tromagnetic field inside the dielectric medium:

ε Eα;α − ε′ Eα Eβ

E
Eα;β = 0,

μ0 H
α;α = 0,

ε Ėλ − ε′Eλ vα Eμ

E
Eμ;α + ηλβρσ vρ Hσ ;β = 0,

μ0 Ḣ
λ − ηλβρσ vρ Eσ ;β = 0.

(81)

We define the unitary vector lμ by setting Eμ ≡ E lμ,
where lμ satisfies lα lα = −1 and use Hadamard conditions
to obtain the propagation waves. Then, the discontinuities
of (81) become [Eμ,λ]� = eμ kλ and [Hμ,λ]� = hμ kλ,
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where eμ(x) and hμ(x) are the amplitudes of the discon-
tinuities and kμ is the wave vector. Thus, it follows that

ε kα eα − ε′
E
Eα eα E

β kβ = 0,

μ0 h
α kα = 0,

ε kα vα e
μ − ε′

E
Eλ eλ v

α kα E
μ + ημναβ kν vα hβ = 0,

μ0 kα v
α hλ − ηλβρσ kβ vρ eσ = 0,

(82)

where ε′ is the derivative of ε with respect to E. Combin-
ing these equations and multiplying by Eμ, we obtain the
dispersion relation
(

ημν+(μ0 ε−1+μ0 ε
′E) vμ vν− ε′

ε E
Eμ Eν

)

kμ kν = 0.

(83)

We see that the envelop of discontinuity propagates dif-
ferently from Minkowski light-cone of the linear Maxwell
theory. In this case, the causal structure is given by an
effective Riemannian geometry. Mathematically, the metric
tensor is a covariant tensor of rank 2 but sometimes we shall
call “metric” a contravariant tensor of rank 2. In particular,
this is the way the Gordon metric appears naturally as ĝμν .
From this point of view, kμ is null-like in ĝμν , namely,

ĝμν kμ kν = 0. (84)

The expression of the effective geometry is given by

ĝμν = ημν + (μ0 ε − 1 +μ0 ε
′ E) vμ vν − ε′ E

ε
lμ lν. (85)

A simple calculation show that its inverse is

ĝμν = ημν −
(

1 − 1

μ0 ε(1 + ξ)

)

vμ vν + ξ

1 + ξ
lμ lν, (86)

where

ξ ≡ ε′E
ε

.

In particular, when ε is a constant, this formula reduces
to Gordon metric

ĝμν = ημν + (εμ0 − 1) vμ vν, (87)

which depends only on the dielectric properties μ0, ε and its
velocity vμ. The magnitude N ≡ ημνvμvν of the wave vec-
tor in Minkowski space-time (written in terms of dielectric
properties) is determined by Gordon dispersion relation

ĝμνkμkν = (ημν + (εμ0 − 1) vμvν) kμkν = 0,=⇒
=⇒ N = (1 − μ0ε)(k

αvα)
2,

(88)

where kαvα ≡ kαvβη
αβ is evaluated in the Minkowski

metric.

The analysis of the wave propagation in material media
and the study of effective geometry are particularly inter-
esting in the investigation of analogue model [162] for the
understanding of kinematical properties at very small scale
of astrophysical objects [155].

6.3 Effective Gravity

The property of the propagation of electromagnetic waves
in a moving dielectric has been used to analyze certain par-
ticularities of gravity (and vice-versa [50]). We then turn
our attention to the curved geometry that controls the pho-
ton propagation in a moving dielectric. We start by noting
that there is no restriction whatsoever on the particularities
of this motion. We can then choose particular displacements
of the dielectrics to reproduce specific geometries that could
help in the investigation of specific metrics that are par-
ticular solutions of GR. Let us show a simple example of
this.

Select a given congruence of curves that has no shear, no
vorticity, and no acceleration. Thus, we can set

vμ ,ν = θ

3
hμν

where hμν = ημν − vμ vν. Define v̂μ = vμ, thus

v̂μ = ε μ vμ

where vμ = ημν vν and v̂μ = ĝμνvν . The Christoffel
symbol for the effective metric are given by

̂�λ
μν = θ

3
(1 − ε μ) vλ hμν.

For the contracted curvature, this form yields

Rμν = (ε μ − 1)

3
(θ̇ + θ2) hμν.

From the Raychaudhuri equation (see Section 2), it follows

θ̇ + θ2

3
= 0.

We can use these properties to combine such geometry
with the equations of GR and define the Einstein tensor
̂Gμν ≡ ̂Rμν − 1

2
̂R ĝμν that allows us to define an equivalent

source for this geometry defined by

̂Tμν = (εμ − 1)

9
θ2
(

ημν + (3 − εμ)

εμ
vμ vν

)

That is, the motion of the photon inside the dielectric
endowed with such effective metric mimics situations that
are obtained through solutions of Einstein’s equations.

6.4 The Uses of Effective Metric

Let us now provide another simple example of a physical
system where the exceptional dynamics may be relevant
to real practical situations and may be used to investigate
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dynamical aspects of fields in curved space-times. The basic
system consists of Maxwell’s electrodynamics inside (lin-
ear) dielectric medium in motion. The quantities we will
deal with consists in tensors Fμν and Pμν and a normal-
ized time-like vector field vμ(x) that is ημνvμvν = 1 which
represents the velocity field of the material. For pedagogi-
cal reasons, we restrict our analysis to the case of isotropic
constitutive laws provided by

Dα = ε(x)Eα and Bα = μ(x)Hα. (89)

The equations of motion are (79) and the study of field dis-
continuities inside such material leads to Gordon’s metric
(87). Thus, the wave fronts inside an isotropic, heteroge-
neous, and linear material are described by a null vector
kμ with respect to this effective metric, i.e., ĝμνkμkν = 0.
Furthermore, we showed above that kμ is a geodesic with
respect to ĝμν . This result was obtained several times in
the literature of analogue models, enabling the study of
kinematical aspects of fields that mimic the presence of
gravitation. On the other hand, there exist various situations,
typical of certain class of materials, where it is possible
to go beyond this kinematical analogy. In these cases, the
field dynamics itself is described by its dependence on the
effective metric, as in the case of exceptional dynamics.

In fact, using the Cayley-Hamilton formula, it follows
that

ĝ ≡ det(ĝμν) = − 1

με
. (90)

Also, from the definition of the effective metric, we obtain
the identity

̂Fμν ≡ ĝμαĝνβFαβ = μPμν. (91)

Using (90) and (91) simultaneously, it is possible to write
the first of Maxwell equations (79) in the form
(

1

μ
̂Fμν

)

,ν

= 0. (92)

In the case of impedance-matched materials where the ratio
ε/μ is constant, we can rewrite this equation in the very
suggestive form

(
√−ĝ ̂Fμν),ν = 0, (93)

Finally, the complete set of Maxwell equations (79) in this
medium can be written as

̂∇ν
̂Fμν = 0 ̂∇[α̂Fμν] = 0, (94)

where ̂∇α is the covariant derivative written in terms of ĝμν .
This means that the effective metric, that describes the char-
acteristics, has an active part in the very description of the
field dynamics. This situation can be used as a tool to inves-
tigate simultaneously kinematical and dynamical aspects of
fields interacting with gravity in laboratories. We shall see

afterwards that this dynamic equivalence can be useful to
describe nonlinear field theories in the context of equivalent
metric.

6.5 Moving Dielectrics: Alternative Expressions

Let us go back to Gordon’s paper and its generalization that
is characterized by the associated metric

ĝμν = ημν + (εμ − 1) vμ vν, (95)

where ε and μ are parameters that characterize the dielec-
tric and vμ is the four-velocity of the dielectric. Note that
this metric can also be used to describe nonlinear structures
when ε and μ depends on the intensity of the field [158].

We shall analyze this propagation under the new perspec-
tive presented in the previous section. We start by noting
that the net effect of the motion of a dielectric is to pro-
duce an acceleration for the light ray that propagate inside
it. Indeed, we note that the quantity N = kμ kν η

μν is not
null and varies through the motion of the dielectric. Once kμ
is a gradient, we set kμ = ∂μ�. Let us construct, following
the expression of the DM defined previously, the metric

q̂μν = ημν + β kμ kν, (96)

where we set that̂kμ = kμ. Correspondingly, the contravari-
ant expression is

̂kμ = (1 + β N) kμ.

Imposing that this vector has unit norm in the DM, it follows
that N(1 + β N) = 1. Thus, the optic ray ̂kμ becomes a
geodesic in this DM. This is a trivial consequence of the
fact that this vector is both the gradient of a function and
has constant norm. We then rewrite the Gordon result in the
form

Lemma 4 In a moving dielectric, the optic rays propagate
through geodesics in the associated DM of the form

q̂μν = ημν + 1 − N

N2
kμ kν,

where N = (1 − μ0 ε) (kμ vν η
μν)2.

There are two equivalent forms to define the DM for the
path of photons in a moving dielectric, that is:

• The Gordon metric

ĝμν = ημν + (ε μ − 1) vμ vν;
• The dragged form

q̂μν = ημν + 1 − N

N2
kμ kν. (97)

Note that we have used the fact that N is constant along
the ray, that is N,μ k

μ = 0. Thus, the above Lemma is valid
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only for rays kμ such that its angle with the motion of the
dielectric is preserved along the ray.

The interesting remark concerns the fact that, although in
the Gordon analysis the associated metric depends explicitly
on the velocity of the dielectric, in the present formulation
this dependence is hidden in the form of the scalar product
(kμ vν η

μν) and the direction of the ray kμ appears explicitly
in the driven metric. This difference plays a very impor-
tant role in the cases of the search of the properties that
mimics GR using electromagnetic effective geometry, as for
instance in the case of non-gravitational black-hole as we
shall see later.

6.6 Polynomial Metrics

Gordon approach depends explicitly on the velocity vα of
the dielectric. Nevertheless, such form of introducing an
effective metric is not unique as we have shown in (97).
Indeed, it is possible to construct another metric q̂μν that
allows to arrive at the same results obtained by Gordon
and besides reduces the dependence on the four-velocity vα .
From practical reasons, it might be useful to weaken this
constraint of Gordon approach, once it is easier to deter-
mine the shape of the electromagnetic wave packet in the
laboratory than constructing nonlinear dielectric media with
arbitrary tensorial parameters εαβ and μαβ—despite of the
great advances in this research area recently [181, 187].

Let us now show that there exists a class of geome-
tries which play the same role as Gordon metric depending
only on the angle kαv

α between the wave vector kα and
the dielectric four-vector vα . This is achieved by general-
izations of results of previous sections. Let us list some
examples:

Case A: this approach corresponds to Section 6.5 where
the metric is given by (96). We transform there the non-
normalized wave vector kμ in Minkowski background in
a normalized time-like vector in q̂μν , namely, ̂N(q) =
(1 +β N)N ≡ 1. It does not violate Lorentz invariance,
because everything happens inside the dielectric. We note
that it is not possible to fix ̂N equal to zero, otherwise the
metric is ill-defined. Therefore, kμ is not a null-like vec-
tor in the ̂Q-metric. Another feature is that the magnitude
of the dielectric four-vector

q̂μν vμ vν = 1 + β (kμ vν η
μν)2,

is not necessarily positive definite allowing observers
with velocity great than speed of light inside the medium
In the laboratory, the angle between these two vectors
is easier to manipulate than the dielectric velocity field
only. We expect that this fact could be of reasonable

utility in the research of analog models. For instance, if
we set

1 + β(kμ vν η
μν)2 = 0,

then, using (88), we obtain

β = (μ0 ε − 1)

N
.

Substituting this result into the equation for the norm of
kμ in q̂μν , yields

μ0 εN = 1.

Therefore, the metric q̂μν with this particular value of
β produces the following outcome: the wave vector kμ
becomes a normalized and time-like vector, while the
dielectric velocity vμ, which was a time-like vector in the
Minkowski background, becomes a null geodesic in q̂μν .
Thus, the causal structure is no more determined by kμ.

Remark that the metric q̂μν presented in the precedent
sections is not unique. We can enlarge the set of metrics that
have the same properties showed above adding other terms
to q̂μν provided the condition (241) is valid. To exemplify
these cases, we consider:

Case B: the polynomial metric is given by

m̂μν = ημν + β kμ kν + δaμaν.

It is straightforward to show that its inverse has an extra
term

m̂μν = ημν + B kμ kν + �aμaν + �a(μkν),

where ( ) means symmetrization. The coefficients of the
inverse metric are

B=−β(1−δa2)

X
, �=−δ(1+βN)

X
, and �= βδṄ

2X
.

Here, we defined a2 ≡ −aαaα , Ṅ ≡ N,μk
μ and

X = 1 − δa2 + βN − βδ

(

Ṅ2

4
+ Na2

)

.

The appearance of an extra term also happens with the
inverse metric when we consider instead of aμaν a term of
the form a(μkν). In both cases, an extra term is necessary
breaking the polynomial symmetry between the metric and
its inverse. Nevertheless, we will present the calculations for
this case focusing only on the metric containing the term
aμaν and indicating that the results are very similar when
the other term is considered separately.

The geodetic motion condition for the wave vector leads
to

̂N(m) = (1 + βN)N + δ

4
Ṅ2 = 0.
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Note that this approach permits a null geodesic motion for
the wave vector kμ. This is the simplest case in which we
regain the main Gordon result (kμ as a null-like geodesic).
The sign of the norm of vμ is undetermined and may be
chosen arbitrarily.

Case C: the most general case involving first-order
derivatives of kμ occurs when the metric is expressed in
the form (higher derivatives of kμ greater than that leads
to a metric tensor q̂μν ill-defined.)

n̂μν = ημν + β kμ kν + δaμaν + λa(μkν)

and its inverse is

n̂μν = ημν + B kμ kν + �aμaν + �a(μkν).

The covariant metric coefficients are given by

B = −β(1 − δa2) + λa2

Z
,

� = −δ(1 + β N) − λ2N

Z

and � = −λ(2 + Ṅ λ) − 2β δ Ṅ

2Z
,

where Z=
[

1−δ a2+β N+Ṅ λ−(β δ−λ2)
(

1
4 Ṅ

2+N a2
)]

.

Once it involves more degrees of freedom, we can regain
all outcomes presented before, but with different algebraic
relations of course. In particular, the magnitude of the wave
vector in n̂μν is set

̂N(n) = (1 + β N + λ Ṅ)N + δ

4
Ṅ2.

Remark that the metric and its inverse have the same
number of polynomial terms as required from the beginning.
Following this reasoning, one can manipulate the cases A
and C in order to describe geometrically the kinematical
aspects of a given theory. In particular, it can be done with
classical mechanics [144, 145] and the electromagnetic case
is in progress.

6.7 Analogue Spherical Black Holes

In this section, we briefly review an example—from
several presented in the literature [11, 12, 99, 117, 198]—
developed recently [19] on how it is possible to generate a
non-gravitational black-hole for photons. Let us consider a
dielectric medium moving with four-velocity vα = δα0 , sub-
jected to an electric field directed along the radial direction
and no magnetic field. For the static spherically symmet-
ric situation we are dealing with, the current four-vector
Jμ = (ρ, �J ) presents only its time component, the charge

density ρ. Maxwell equations written in flat spherical coor-
dinates adapted to the dielectric medium, then reduce to

∂r(
√−γ εE)√−γ

= ρ, (98)

where γ = −r4 sin2 θ . In this case, the effective geometry
generalizes the Gordon metric, yielding

gαβ = diag

(

μ(ε + ε′E), −ε + ε′E
ε

, − 1

r2
, − 1

r2 sin2 θ

)

.

(99)

This form allows one to seek for analogue spherically
symmetric static black hole solutions

gαβ = diag

(

1

A
, −A, − 1

r2
, − 1

r2 sin2 θ

)

, (100)

where A = A(r) is a given radial function such that
A(r) = 1 − rh/r describes a Schwarzschild black hole
with a Schwarzschild radius rh. Equation (100) includes all
spherically symmetric black holes, such as Schwarzschild,
Reissner-Nordström, de-Sitter or combinations thereof,
being characterized by the explicit form of the function A.
The identification of (99) and (100) gives the two possible
solutions

ε + ε′E = ±√ε/μ. (101)

In order to integrate this equation, a two-parameter function
μ = μ(ε,E) can arbitrarily be chosen. Among all pos-
sibilities, we restrict ourselves here to the mathematically
convenient form

μ = ε2
0

ε3
, (102)

where ε0 is the vacuum permittivity constant (with μ0ε0 =
1). Equation (101) then reads (εE)′ = ±ε2/ε0, whose
integration immediately yields ε = ε±, where

ε± = ε0
E
E0

± 1
, (103)

and A(r) = ±ε±/ε0 = 1/(1 ± E/E0), where E0 > 0 is
a constant of integration; for ε = ε+, one has E = E0 at
A = 1/2, while the solution ε = ε− is limited to E > E0

(since E < E0 would correspond to A > 1 in this case). The
usual range −∞ < A < 1 of an effective black hole can
thus be obtained by joining the solution ε− inside horizon
with the solution ε+ outside horizon.

The expressions of the electric field E, the electric dis-
placement D = εE, and the charge density ρ in terms of A
then give

E

E0
= ± (1 − A)

A
, D = ε0 E0 (1 − A),

and ρ = ε0 E0

[

2(1 − A)

r
− dA

dr

]

, (104)
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which hold for either 0 < A < 1 or A < 0. In the case
of a Schwarzschild analogue black hole, these expressions
reduce to E = ±E0rh/(r − rh) with a quadratic charge
density profile ρ = ε0E0rh/r

2 and a linear electric dis-
placement D = ε0E0rh/r (note that ρ/D = 1/r in this
case). Therefore, E diverges at the horizon but remains finite
everywhere else, while both D and ρ are finite at the hori-
zon but they both diverge at the center (except for A − 1 ∼
r−2, which gives ρ = 0 everywhere). The inner solution
should then be regularized near the center. Our definite pro-
posal to a spherically symmetric black hole analogue with
radius R is thus built with a medium whose permittivity is
such that

ε

ε0
= E0

E + E0
, if r > rh, (105)

ε

ε0
= E0

E − E0
, if

1

2
rh < r < rh, (106)

ε

ε0
= 1, if r <

1

2
rh. (107)

When expressed in terms of the radial coordinate r, then
(107) gives ε/ε0 = |A|, where −1 < A < 1. We can com-
pare this result with previous similar proposals: for example,
which rely upon postulating a core absorption coefficient
[141]; here, no doping is required, but only a variable vol-
umetric density of the medium. Moreover, as already noted
[37], that was not a consistent solution of Einstein field
equations; this latter instead deals with the cylindric case,
and proposed a non-diagonal structure for both ε and μ,
while we treat these two parameters both as scalars.

6.8 Reproducing Metrics of GR Through Moving
Dielectrics

Now let us show that the effective metric can mimic some
properties of the geometry discovered by Gödel, where
closed causal paths in spacetime occur.

We start with the background Minkowski geometry writ-
ten in a cylindrical coordinate system

ds2 = dt2 − dr2 − r2 dϕ2 − dz2. (108)

The physical system we analyze consists on a variable
magnetic field that induces an electric field such that the
component F 02 does not vanish. For our purposes here,
we do not need to specify the field further. We choose
the observer that is comoving with the dielectric medium

endowed with a normalized velocity vμ = γ
(

1, 0, ϕ̇
c
, 0
)

,

where γ ≡
(

1 − v2

c2

)− 1
2

is the Lorentz factor and v ≡ rφ̇.

It then follows that the non-null electric components Eμ are
E0 = − Eγ rϕ̇

c
and E2 = − Eγ

r
. The photons propagate as

null geodesics in the effective geometry, whose the non null
components of the metric are

g00 = 1 + (με − 1 + με′ E
)

γ 2 − ε′ E
ε

γ 2v, (109)

g11 = −1, (110)

g22 = −1 + (με − 1 + με′ E
)

(γ v)2 − ε′ E
ε

γ 2, (111)

g02 = (με − 1 + με′ E
)

(γ v)2 − ε′ E
ε

γ 2v, (112)

g33 = −1, (113)

Let us consider a curve defined by the equations t =
constant, r = constant, and z = constant . The length
element of this curve is

ds2
eff = g22 dϕ

2. (114)

This curve can be a photon path if the condition g22 = 0 is
satisfied. In other words, if the velocity of the dielectric is
such that
v

c2
= √

εμ. (115)

Then, the photons follow along closed time-like geodesics
in this effective metric. This velocity is actually possible to
be achieved by real materials, when the relative permittivity
is less than one, that is, when the electric susceptibility χ ,
defined as ε = ε0 (1 + χ), is negative. An example of this is
found in materials where the dielectric response of induced
dipoles is a resonant phenomenon. In this case, for frequen-
cies above the characteristic frequency of the material ωi ,
the electric susceptibility is negative and the equation for the
velocity becomes:

v2

c2
= c2μ0

(

ε0 − 4πNeffe
2

mωi(ω − ωi)

)

, (116)

where (m, e) are the mass and charge of a free electron
respectively and Neff is the oscillator strength times the total
number of electrons per unit volume.

7 Nonlinear Electromagnetic Fields

As we mentioned before, in a dielectric medium, the pho-
ton paths can be described as geodesics in an effective
metric. Such result can be generalized for nonlinear elec-
trodynamics. Indeed, the electromagnetic force a photon
undergoes in a nonlinear regime can be geometrized. This is
a rather unexpected result and, at the same time, a beautiful
consequence of the analysis of the discontinuities of inho-
mogeneous nonlinear electromagnetic field. We will show
how such geometrization is possible. By the same token,
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we will show that this property is not restricted to spin-1
fields, but, on the contrary, it is a rather general property of
nonlinear field theories.

7.1 General Comments on Nonlinear Electrodynamics

Modifications of light propagation in different vacua states
have recently been a subject of interest. Such investiga-
tion shows that, under distinct non trivial vacua (related to
several circumstances such as temperature effects, partic-
ular boundary conditions, quantum polarization, etc.), the
motion of light can be viewed as electromagnetic waves
propagating through a classical dispersive medium. This
medium induces modifications on the equations of motion,
which are described in terms of nonlinearities of the field.
In order to apply such a medium interpretation, we consider,
from the microscopic point of view, modifications of elec-
trodynamics due to virtual pair creation. In this case, the
effects can be simulated by an effective Lagrangian which
depends only on the two gauge invariants F and G of the
electromagnetic field [64, 65, 185, 186].

One of the main achievements of such investigation is the
understanding that, in such nonlinear framework, photons
propagate along geodesics that are no more null in the actual
Minkowski spacetime, but in another effective geometry.
Although the basic understanding of this fact—at least for
the specific case of Born-Infeld electrodynamics [26–28]—
has been known for a long time [169], it has been scarcely
noticed in the literature. Moreover, its consequences were
not exploited any further. In particular, we emphasize the
general application and the corresponding consequences of
the method of the effective geometry outlined here.

The exam of the photon propagation beyond Maxwell
electrodynamics has a rather diversified history: it has been
investigated in curved space-time, as a consequence of non-
minimal coupling of electrodynamics with gravity [55, 67,
154] and in nontrivial QED vacua, as an effective modifi-
cation induced by quantum fluctuations [64, 65, 124, 185,
186]. As a consequence of this examination, some unex-
pected results appear. Just to point one out, we mention the
possibility of faster-than-light photons.

The general approach of all these theories is based on a
gauge invariant effective action, which takes into account
modifications of Maxwell electrodynamics induced by dif-
ferent sorts of processes. Such a procedure is intended
to deal with the quantum vacuum as if it was a clas-
sical medium. Another important consequence of such
point of view is the possibility to interpret all such vacua
modifications—with respect to the photon propagation—as
an effective change of the spacetime metric properties. This
result allows one to appeal to an analogy with the elec-
tromagnetic wave propagation in curved spacetime due to
gravitational phenomena.

Once the modifications of the vacuum which will be dealt
here do not break the gauge invariance of the theory, the gen-
eral form of the modified Lagrangian for electrodynamics
may be written as a functional of the invariants, that is,

L = L(F, G).

We will denote by LF and LG the derivatives of the
Lagrangian L with respect to F and G, respectively; and sim-
ilarly for the higher order derivatives. We are particularly
interested in the derivation of the characteristic surfaces
which guide the propagation of the field discontinuities as
described in the Hadamard’s method before.

7.2 The Method of the Effective Geometry:
One-Parameter Lagrangians

In this section, we will investigate the effects of nonlinear-
ities in the equation of evolution of electromagnetic waves.
We consider in the first part to the simple class of gauge
invariant Lagrangians defined by L = L(F). From the least
action principle, we obtain the field equation

∂μ
(

LFF
μν
) = 0. (117)

Applying the Hadamard conditions for the discontinuity
of the field equation (117) through �, we get

LFf
μν kν + 2LFF ξFμνkν = 0, (118)

where ξ
.= Fαβ fαβ . The consequence of such discontinuity

in the cyclic identity is

fμνkλ + fνλkμ + fλμkν = 0. (119)

In order to obtain a scalar relation, we contract this equation
with kαη

αλFμν , resulting in

ξkνkμη
μν + 2Fμνf λ

ν kλkμ = 0. (120)

Let us consider the case in which ξ does not vanish (cf. the
case ξ = 0 directly in Lichnerowicz, 1958[130]). Substitut-
ing Eq. (120) in (118), we obtain the propagation equation
for the field discontinuities
(

LFη
μν − 4LFFF

μαF ν
α

)

kμkν = 0. (121)

Expression (121) suggests that one can interpret the self-
interaction of the background field Fμν, in what concerns
the propagation of electromagnetic discontinuities, as if it
had induced a modification on the spacetime metric ημν ,
leading to the effective geometry

gμν = LF ημν − 4LFF Fμ
α F

αν. (122)

that is, gμν kμ kν = 0.
A simple inspection of this equation shows that only in

the particular case of linear Maxwell electrodynamics, the
discontinuity of the electromagnetic field propagates along
null paths in the Minkowski background.
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The general expression of the effective geometry can
be equivalently written in terms of the vacuum expectation
value of the energy-momentum tensor, which is

Tμν ≡ 2√−γ

δ �

δ γ μν
, (123)

where �
.= ∫ d4x

√−γ L is the effective action and γμν the
is Minkowski metric written in an arbitrary coordinate sys-
tem. In the case of one-parameter Lagrangians, L = L(F),

we obtain

Tμν = −4LF Fμ
α Fαν − Lγμν, (124)

In terms of this tensor, the effective geometry (122) can be
rewritten as

gμν =
(

LF + LLFF

LF

)

γ μν + LFF

LF

T μν. (125)

We remark that once the modified geometry along which
the photon propagates depends upon the energy-momentum
tensor distribution of the background electromagnetic field,
it is tempting to search for an analogy with the correspond-
ing behavior of photons in a gravitational field.

Therefore, the field discontinuities propagate along null
geodesics in an effective geometry which depends on the
EM energy distribution. Let us point out that, as it is
explicitly shown from the above equation, the stress-energy
distribution of the field is the actual responsible for the devi-
ation of the geometry from its Minkowskian form for the
photons.

In order to show that the photon path is actually a
geodesic curve, it is necessary to know the inverse gμν of
the effective metric gνλ, defined by

gμν gνλ = δ
μ
λ . (126)

This calculation is simplified if we take into account the
well known properties:

F ∗
μν F

νλ = − 1

4
Gδλμ, (127)

and

F ∗
μλ F

∗ λν − Fμλ F
λν = 1

2
F δνμ. (128)

Thus, the covariant form of the metric can be written in
the form:

gμν = a ημν + b Tμν, (129)

in which a and b are given in terms of the Lagrangian and
its corresponding derivatives by:

a = − b

(

L2
F

LFF

+ L + 1

2
T

)

, (130)

and

b = 16
LFF

LF

[(

F 2 + G2
)

L2
FF − 16 (LF + F LFF )

2
]− 1

,

(131)

where T = T α
α is the trace of the energy-momentum tensor.

7.3 Two-Parameter Lagrangians

In this section, we will go one step further and deal with
the general case in which the effective action depends upon
both invariants, that is

L = L(F, G). (132)

The equations of motion are

∂ν
(

LFF
μν + LGF

∗μν) = 0. (133)

Our aim is to examine the propagation of the discontinuities
in such case. Following the same procedure as presented in
the previous section, one gets

[LF f μν + 2AFμν + 2B F ∗μν] kν = 0, (134)

and contracting this expression with Fα
μkα and F ∗α

μkα ,
respectively, yields
[

ξ LF + 1

2
B G

]

ημν kμ kν − 2AFν
α F

αμkνkμ = 0 (135)

and
[

ζ LF − B F + 1

2
AG

]

ημν kμ kν−2BFν
α F

αμkνkμ = 0.

(136)

In these expressions, we have set A
.= 2 (ξ LFF + ζ LFG),

B
.= 2 (ξ LFG + ζ LGG), and ζ

.= Fαβ f ∗
αβ .

In order to simplify our equations, it is worth defining the
quantity �

.= ζ/ξ . From Eqs. (135) and (136), it follows
that

�2 �1 + ��2 + �3 = 0, (137)

with the quantities �i, i = 1, 2, 3 given by

�1 = −LFLFG + 2FLFGLGG +G(L2
GG − L2

FG), (138)

�2 = (LF+2GLFG)(LGG−LFF )+2F(LFFLGG+L2
FG),

(139)

�3 = LFLFG + 2FLFFLFG + G(L2
FG − L2

FF ). (140)

The quantity � is then given by the algebraic expression

� = −�2 ± √
�

2�1
, (141)
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where �
.= (�2)

2 − 4�1�3. Thus, in the general case,
we are concerned here, the photon path is kinematically
described by

gμν kμ kν = 0, (142)

where the effective metric gμν is given by

gμν=LF η
μν−4

[

(LFF +�LFG)F
μ
λF

λν+(LFG+�LGG)F
μ
λF

∗ λν] .
(143)

When the Lagrangian does not depend on the invariant G,
expression (143) reduces to the form (122).

From the general expression of the energy-momentum
tensor for an electromagnetic theoryL = L(F, G), we have

Tμν = −4LF Fμ
α Fαν − (L − GLG) ημν. (144)

The scale anomaly is given by the trace

T = 4 (−L + F LF + GLG) . (145)

We can then rewrite the effective geometry in a more appeal-
ing form in terms of the energy momentum tensor, that is,

gμν = M ημν + N T μν, (146)
where the functions M and N are given by

M=LF + G(LFG+�LGG)+ 1

LF

(LFF +�LFG) (L−GLG) ,

(147)

N = 1

LF

(LFF + �LFG) . (148)

As a consequence of this, the Minkowskian norm of the
propagation vector kμ reads

ημνkμ kν = − N
MT μνkμkν. (149)

7.4 The Effective Null Geodesics

The geometrical relevance of the effective geometry goes
beyond its immediate definition. Indeed, as follows, it will
be shown that the integral curves of the vector kν (i.e.,
the photons trajectories) are in fact geodesics. In order to
achieve this result, it will be required an underlying Rieman-
nian structure for the manifold associated with the effective
geometry. In other words, this implies a set of Levi-Civita
connection coefficients �α

μν = �α
νμ, by means of which

there exists a covariant differential operator ∇λ (the covari-
ant derivative in the effective metric) such that

∇λg
μν ≡ gμν ; λ ≡ gμν, λ + �μ

σλg
σν + �ν

σλg
σμ = 0.

(150)

From (150), it follows that the effective connection coeffi-
cients are completely determined from the effective geome-
try by the usual Christoffel formula.

Contracting (150) with kμkν yields

kμkνg
μν

, λ = −2kμkν�
μ
σλg

σν. (151)

Differentiating the dispersion relation we have

2kμ, λkνg
μν + kμkνg

μν
, λ = 0. (152)

Inserting this into the left-hand side of (151), we obtain

gμνkμ; λkν ≡ gμν
(

kμ, λ − �σ
μλkσ

)

kν = 0. (153)

As the propagation vector kμ = �,μ is an exact gradient
one can write kμ; λ = kλ;μ. With this identity and defining
kμ

.= gμνkν , Eq. (153) reads

kμ; λkλ = 0, (154)

which states that kμ is a null geodesic vector (with respect
to the effective geometry gμν), namely, its integral curves
are therefore null geodesics.

7.5 Exceptional Lagrangians

It seems worth noting that Eq. (143) contains a remarkable
result: the velocities of the photon are, in general, doubled.
There are some exceptional cases, however, for which the
uniqueness of the path is guaranteed by the equations of
motion [18, 25]. Such uniqueness occurs for those dynamics
described by Lagrangian L that satisfy the condition

� = 0.

The most known example of such uniqueness for the
photon velocity in a nonlinear theory is the Born-Infeld
(BI) electrodynamics, which we will study in details next
section. Originally, the BI theory was an attempt to mod-
ify Maxwell’s electromagnetism that could circumvent the
self-energy divergence of the classical point-like charged
particle. Hence, one of its main motivations was to establish
a consistent classical theory for the electron. Notwithstand-
ing, the BI theory has other interesting features that make
it a distinguished theory among nonlinear electromagnetic
theories: (1) excitations propagate without the shocks, com-
mon to generic nonlinear models; (2) single characteristic
surface equation, i.e., birefringence is absent; (3) fulfills the
positive energy density condition; and (4) satisfies the dual-
ity invariance [150]. Nowadays, there has been a renewed
interest in BI theories and its non-abelian generalizations
in connection with the theory of strings, gauge fields on
D-branes, K-essence-like models in cosmology, and others.
Thus, BI theory is a good prototype of a nonlinear theory
with desirable physical properties.
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7.6 The Special Case of Born-Infeld Dynamics

Let us pause for a while in order to analyze the BI theory
closely. Then, we start with the BI Lagrangian in the form

L = β2
(

1 − √
U
)

, (155)

where

U ≡ 1 + F

2β2
− G2

16β4
.

Note that the addition of a constant term in the lagrangian
has the purpose to make the energy-momentum tensor of
the point-charge field goes to zero in the spatial infinity.
In a cosmological scenario, it can be interpreted as a kind
of cosmological constant. However, here it plays no role
whatsoever and can be omitted at will.

Born and Infeld had shown that such nonlinear dynamics
may be written in terms of the determinant of an object that
has no symmetry Cμν constructed as

Cμν ≡ ημν + Fμν.

Indeed, they showed that the Lagrangian takes the form L ∼
det [Cμ

ν].
We shall see that using the effective metric obtained

through the path of photons in this theory it is possible
to describe the same Lagrangian using a symmetric tensor
that appears naturally in the causal structure of this theory.
We have shown that the causal structure represented by the
effective metric of a given nonlinear theory depends on the
dynamics of the field and non the other way round. How-
ever, we could ask if there exists a particular theory such
that its dynamics is given as a functional of its effective
geometry. We shall see that BI is precisely such theory.

In the case of the BI theory, all quantities �i, i = 1, 2, 3
vanish identically. Hence, in this situation, we cannot obtain
the effective geometry from Eq. (143). In this very excep-
tional case, we have to return to the original Eq. (135). The
most direct way to prove this is to to try to solve the fol-
lowing problem. Given an arbitrary Lagrangian of the form

L = L(F,G) (156)

Its corresponding effective geometry (that controls the path
of its discontinuities) in the BI particular case takes the form

gμν = 1

4β2 U
3
2

[

(β2 + F

2
) ημν + Fμ

λ F
λν

]

(157)

Its inverse is

gμν = 4
√
U

[

ημν − 1

β2
Fμ

λ Fλν

]

(158)

This correspond to a unique characteristic equation which
does not show birefringence—this was obtained by Ple-
banski [169] for the first time. From the Cayley-Hamilton
formula for A ≡ ημαgαν = I − (1/β2) Fμ

α F
α
ν , we

find the unexpected result that the lagrangian can be writ-
ten in terms of the determinant of the metric that drives the
propagation of the discontinuities:

detA = U2. (159)

Using this expression, we can rewrite BI Lagrangian in the
form in which only the determinant of the effective metric
appears:

LBI = β2
[

1 − 1

2
(det[gμν]) 1

8

]

(160)

We can then state the following equivalent form of BI
dynamics that exhibits a very curious phenomenon of self-
consistency in action: the BI dynamics of the electromag-
netic field is obtained by a variation of the effective metric
that extremizes its determinant. This geometry is related to
the causal structure of the theory.

Let us now combine this nonlinear electrodynamics to
gravity within the description of general relativity. From the
expression of the determinant, we can write

det

(

δμν − 1

β2
Fμ

α F
α
ν

)

= U2 (161)

or equivalently,

det

(

δμν + 1

β
Fμ

ν

)

= U. (162)

In general, the energy-momentum tensor for the nonlin-
ear electrodynamics has the form

Tμν = −4LF Fμ
α Fαν + (GLG − L) gbμν, (163)

where the index b in the metric tensor makes reference to
the background geometry. For the BI case, we find

Tμν = 1√
U

Fμ
α Fαν +

(

G2

16β2
√
U

− β2 + β2
√
U

)

gbμν

(164)

We can thus write

Fμ
α Fαν = √

U Tμν −
(

F

2
+ β2 − β2

√
U

)

gbμν. (165)

Note that the trace is given by

T = −F√
U

+ G2

4β2
√
U

− 4β2 + 4β2
√
U (166)

consequently the effective metric reduces to

gμν = 4U

β2

(

−Tμν + 1

2
T gbμν

)

(167)

from the equations of GR it becomes

gμν = 4U

β2
Rμν. (168)

We summarize this result in the following
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Lemma 5 Let us combine the BI nonlinear theory mini-
mally coupled to the gravitational field obeying the equa-
tions of GR. Let lμ be a null vector for the background
metric and kμ the propagating vector for the discontinuities
of the nonlinear electrodynamics. We have shown that linear
photons follows null geodesics in the background geome-
try gbμν and the nonlinear photons follow geodesics in the
effective geometry gμν.

Thus for the linear photons, the propagation vector lν sat-
isfies the condition gbμν l

μ lν = 0 and the BI photons obey
Rb
μν l

μ lν = 0, where Rb
μν is the Ricci tensor of the back-

ground geometry. This expression shows an unexpected
relationship between the effective metric and the curvature
of the background metric.

7.7 Special Riemannian Geometries

In this review, we deal with many different kinds of geome-
try that belong to a specific binomial structure. This form of
geometry is typical of the effective geometry that controls
the propagation of waves in nonlinear field theories. How-
ever, it appears in many other situations and it is much more
general as we shall see.

Let gμν be the Riemannian metric of space-time. We
construct an associated geometry through the definition

q̂μν ≡ a gμν + b φμν. (169)

We require that the inverse metric q̂μν defined by q̂μν q̂να =
δ
μ
α must have the same binomial form, that is

q̂μν ≡ Agμν + B φμν. (170)

Although parameters a and b are completely arbitrary, the
associated ones A and B are given in terms of a and b.

Thus, the tensor φμν which is constructed in terms of
other fields—scalar, vector, for instance—must satisfy the
condition

φμν φ
νλ = mδλμ + nφλμ (171)

We will analyze in these notes some examples like

• Scalar field: where φμν = ∂μϕ∂νϕ, m = 0, and n =
ω ≡ ∂μϕ∂

μϕ.
• Electromagnetic field: where φμν ≡ Fμ

αFαν , m =
(1/16)G2, and n = −F/2.

• Spinor fields: φμν is given by a combination between
the vector Jμ and axial Iμ currents.

7.8 Some Remarkable Consequences: Closed Null-Like
Paths

The effective metric method to describe propagation of pho-
tons by modification of the underlying metric can be used

to mimic unusual solutions of the equations of GR. A par-
ticular situation concerns the rotating universe proposed by
Gödel that contains closed time-like paths, as we discussed
before. We shall show the possibility of the existence of
closed paths for photons in space-time.

The physical system we will analyze consists of
a charged wire running through a solenoid. The flat
Minkowskian background geometry is written in a
(t, r, ϕ, z) coordinate system as

ds2 = dt2 − dr2 − r2 dϕ2 − dz2. (172)

The non-null components of the Maxwell tensor Fμν , com-
patible with the symmetry properties of the system, are
F 01 = E(r) and F 12 = B(r). In this case, the equation of
motion of the system reduces to

r LF F 01 = Q, (173)

r LF F 12 = μ, (174)

where Q and μ are constants that determine the charge
density of the wire and the current carried through the
solenoid respectively. We are interested in the analysis of the
propagation of electromagnetic waves in the region inside
the solenoid. Following our previous treatment, we can
assert that the photons propagate as if the metric structure
of space-time was changed into an effective Riemannian
geometry. From Eq. (143), we obtain the following compo-
nents of the effective metric

g00 = 1 − ψ E2, (175)

g11 = −1 − ψ (B2 r2 − E2), (176)

g02 = ψ E B, (177)

g22 = −
(

1

r2
+ ψ B2

)

, (178)

g33 = − 1, (179)

where � = 4 LFF

LF
. The photon paths are null geodesics

in this effective geometry. Consider a curve defined by the
equations t = const., r = const., and z = const. The
length element of this curve is given by

ds2
eff = g22 dϕ

2. (180)

This curve can become a photon path if there is a radius
r = rc such that g22(rc) = 0. In terms of the contravari-
ant components of the effective metric listed above, this
condition results

(1 − �E2) = 0. (181)
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The solution for this equation is

rc = 2Q

LF

(

LFF

LF

)1/2

(182)

which implies that

LFF

LF

∣

∣

∣

∣

rc

> 0. (183)

In order to present a simple example which exhibits closed
curves, we work with a BI-like Lagrangian

L = β2

2

(√

1 − F

β2
− 1

)

. (184)

Note that although highly speculative, this Lagrangian has
the Maxwell limit for weak fields (F � β2). It also has
an interesting property in the situation we are examining.
Substituting the Lagrangian (184) into Eq. (181), we find
that the magnetic field in this case takes the large value B =
β/

√
2.

Other nonlinear Lagrangians such as the Heisenberg-
Euler Lagrangian for QED cannot be analyzed with the
formalism presented here since they depend on both invari-
ants F and G. The real interest in this phenomenon is that
it might be possible to be observed in the laboratory. This
possibility rests in the analogy between the propagation
of photons described by nonlinear Lagrangians in vacuum
and that of photons described by Maxwell’s theory in the
presence of a dielectric [150]

It has been known from more than half a century that
gravitational processes allow the existence of closed paths
in space-time. This led to the belief that this strange sit-
uation occurs uniquely under the effect of gravity. In the
above example, we have shown that this is not the case.
Indeed, photons can follow closed curves (CC’s) in space-
time due to electromagnetic forces in a nonlinear regime. In
the limiting case in which the nonlinearities are neglected,
the presence of CC’s is no more possible. Thus, we can
state that this property depends crucially on the nonlin-
earity of the electromagnetic processes and it does not
exist in Maxwell’s theory. In other words, the existence of
closed paths in space-time is not an exclusive property of
the gravitational interaction: it appears also in pure elec-
tromagnetic processes, depending on the nonlinearities of
the background field. The existence of such paths in both
gravitational and electromagnetic processes asks for a deep
review of the causal structure as displayed by the geodesics
of the photons.

7.9 Analogue Model for Kasner Cosmology

Inside material media electrodynamics are described by
nonlinear equations. Indeed, in such situations, Maxwell
equations must be supplemented with constitutive relations

which, in general, are nonlinear and depend on the physical
properties of the medium under the action of external fields.
As a consequence, several effects (non usual in the context
of linear Maxwell theory) are predicted. Of actual inter-
est is the phenomenon of artificial birefringence: when an
external field is applied in a medium with nonlinear dielec-
tric properties, an artificial optical axis may appear [51–54,
56–58, 122, 175].

Analogue models have been proposed in several branches
of physics. It deals with acoustics [10, 73, 80, 81, 101, 110,
129, 136, 192, 195], optics [40, 126, 127, 158, 169, 172,
180, 194] among others [9, 29, 87, 111, 128, 196, 197] with
experimental verification including quantum effects [13, 98,
166, 184, 201, 207], despite of contrary claims [15]. These
are only representative references; a complete review can be
found in [11, 12].

Particularly, nonlinear electrodynamics has been consid-
ered as a possible scenario to construct analogue models
for GR, either in the context of nonlinear Lagrangian or
nonlinear material media. As an example, let us show that
homogeneous dielectric media at rest with the dielectric
coefficients εμν ( �E) and constant μ, in the limit of geometri-
cal optics, can be used to construct an analogue model for
Kasner cosmology. In order to avoid ambiguities with the
wave velocity, dispersive effects were neglected by consid-
ering only monochromatic waves. It is shown that naturally
uniaxial media presenting nonlinear dielectric properties
can be operated by external fields in such way to induce
anisotropy in the optical metric.

Recently, the effective geometry for light rays in local
anisotropic dielectric media was obtained [57], which can
be presented in the symmetrized form:

g
αβ
± = μαV αV β + 1

2

[

Cν
ν − 1

μ(v±
ϕ )2

]

C(αβ)− 1

2
C(α

νC
νβ),

(185)

where

Cα
τ

.= εατ + ∂εαβ

∂Eτ
Eβ + 1

ω

∂εαβ

∂Bρ
ηρλγ τE

βKλVγ (186)

and the phase velocities v±
ϕ are

v±
ϕ =

√

√

√

√

β

2α

(

1 ±
√

1 + 4αγ

β2

)

, (187)

with ω
.= KαVα identified as the frequency of the elec-

tromagnetic wave and the coefficients α, β, and γ given
by

α
.= 1

6

[

(Cμ
μ)

3− 3Cμ
μC

α
βC

β
α + 2Cα

βC
β
γ C

γ
α

]

, (188)

β
.= μ−1 (Cλ

αC
αν − Cα

αC
λν
)

q̂λq̂ν, (189)
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γ
.= μ−2Cλνq̂λq̂ν . (190)

In the last two Eqs. (189–190), we introduced the three-
dimensional projection of the wave vector Kα as qα =
hαμK

μ = Kα − ωV α .
The symmetric tensors gμν± represent the optical metrics

(also known as effective geometries) associated with the
wave propagation, and the symbol ± indicates the possible
distinct metrics, one for each polarization mode. Corre-
spondingly to it (187) expresses the fact that, in general, the
phase velocity of the electromagnetic waves inside a mate-
rial medium may get two possible values (v+

ϕ , v
−
ϕ ) which are

associated with the two possible polarization modes [52].
For the particular case of Maxwell linear theory in vacuum,
both metrics gμν+ and g

μν
− reduce to the Minkowski metric

ημν , as expected.
Now, let us consider a naturally uniaxial medium react-

ing nonlinearly when subjected to an external electric field
as εαβ = diag[0, ε‖(E), ε⊥(E), ε⊥(E)]. In this case, εαβ =
εαβ(E) and by setting �E in the x-direction (optical axis)
we obtain Cα

β = diag(0, ε‖ + Eε′‖, ε⊥, ε⊥), where ε′‖ =
dε‖/dE. For this particular case, Cαβ is a symmetric tensor.
The phase velocities reduce to

(v+
ϕ )

2 = 1

με⊥
, (191)

(v−
ϕ )

2 = 1

με⊥C1
1

[

ε⊥(1 − q̂1
2) + C1

1q̂1
2
]

. (192)

Note that v−
ϕ depends on the direction of propagation, as

it should be expected for the extraordinary ray. The two
velocities coincide when either the propagation occurs along
the direction of the electric field (̂q1

2 = 1), or when the
no-birefringence condition ε‖ + Eε′‖ = 0 holds [57].

Let us also particularize to the model where

ε⊥ = ε⊥ − 3pE2, and ε‖ = ε‖ − sE2. (193)

where s and p are constants. Thus, Cα
β = diag(0, ε‖ −

3sE2, ε⊥ − 3pE2, ε⊥ − 3pE2).
For the ordinary ray, the optical metric coefficients are

g00+ = μα (194)

gii+ = −ε‖ε⊥ + 3(sε⊥ + pε‖)E2 − 9spE4 (195)

where

α = −27sp2E6 + 9p(pε‖ + 2sε⊥)E4

−3ε⊥(sε⊥ + 2pε‖)E2 + ε‖ε2⊥. (196)

Equations (194–195) show that for the ordinary ray, there
will be no anisotropy in the space section.

For the extraordinary ray, the optical metric coefficients
are

g00− = μα (197)

g11− = −(χ − ε‖ + 3sE2)(ε‖ − 3sE2) (198)

g22− = g33− = −(χ − ε⊥ + 3pE2)(ε⊥ − 3pE2) (199)

where χ depends on the direction on wave propagation as

χ = − (ε‖ − 3sE2)(ε⊥ − 3pE2)

(ε⊥ − 3pE2)(1 − q̂1
2) + (ε‖ − 3sE2)̂q1

2

+(ε‖ − 3sE2) + 2(ε⊥ − 3pE2). (200)

Equations (197–199) show that for the extraordinary ray,
there will be anisotropy in the space section (g11− 	= g22− =
g33− ).

Before closing this section, we note that when the prop-
agation occurs in the direction of the optical axes it follows
χ |q̂1

2=1 = (ε‖ − 3sE2) + (ε⊥ − 3pE2) and g11− = g22− =
g33− = −(ε‖ − 3sE2)(ε⊥ − 3pE2). By the other hand, when
the propagation occurs perpendicularly to the optical axes,
it follows χ |q̂1

2=0 = 2(ε⊥ − 3pE2) and g11− 	= g22− = g33− .
Using results presented in the literature describing

the propagation of monochromatic electromagnetic waves
inside naturally anisotropic material media with nonlin-
ear dielectric properties, an analogue model for gen-
eral relativity presenting anisotropy in the space section
has been constructed. Thus, light propagation in local
anisotropic media can be used as a tool for test-
ing kinematic aspects of Kasner cosmological model in
laboratory.

8 Reproducing Metrics of GR Through Scalar
Fields

The phenomenon of induced metric that we have been ana-
lyzed for electrodynamics is rather general and may occur
for any nonlinear theory independently of its spin proper-
ties. In this section, we consider the case of a nonlinear
scalar field. We will show that a class of theories that
have been analyzed in the literature, having regular config-
uration in the Minkowski space-time background, is such
that the field propagates like free waves in an effective
de Sitter geometry. The observation of these waves would
led us to infer, erroneously, that we live in a de Sitter
universe.
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8.1 The Kinematical Analogy

Let us give a simple example. Consider a scalar field ϕ prop-
agating in a flat space-time whose dynamics is provided by
the nonlinear Lagrangian

L = L(w),

where w ≡ ∂μϕ ∂νϕ η
μν is the canonical kinematic term.

The equation of motion for ϕ reads

∂μ

(

Lw ∂νϕ η
μν
)

= 0, (201)

where Lw denotes the first derivative of L with respect to w.
By expanding the left-hand side, we obtain the explicit form

Lw�ϕ + 2Lww∂
μϕ∂νϕ∂μ∂νϕ = 0, (202)

with � ≡ ημν∂μ∂ν . This constitutes a quasi-linear second-
order partial differential equation for ϕ. We are interested in
evaluating the characteristic surfaces of wave propagation
in this theory. The most direct and elegant way to pursue
this goal is to use the Hadamard formalism discussed in
Section 6.1.

Let � be a surface of discontinuity of the scalar field ϕ.

The field ϕ and its first derivative ∂μϕ are continuous across
�, while the second derivative presents a discontinuity:

[ϕ]� = 0,
[

∂μϕ
]

�
= 0, and

[

∂μ∂νϕ
]

�
= kμkνξ(x),

(203)

where kμ = ∂μ� is the propagation vector and ξ(x) the
amplitude of the discontinuity. From the above conditions,
we obtain that both Lw and Lww are continuous functions
across �. Using these discontinuity properties in the equa-
tion of motion (202), it follows that only the second-order
derivative terms contribute. We obtain the relation

Lwη
μν
[

∂μ∂νϕ
]

�
+ 2Lww ∂μϕ∂νϕ

[

∂μ∂νϕ
]

�
= 0. (204)

Thus, using Hadamard conditions, it follows

kμkν

(

Lwη
μν + 2Lww∂

μϕ∂νϕ
)

= 0.

This equation suggests the introduction of the effective
metric defined by

ĝμν ≡ Lwη
μν + 2Lww∂

μϕ∂νϕ. (205)

Thus, there are two distinct metrics in this framework: the
Minkowskian ημν that enters in the dynamics of the field ϕ

and the effective metric ĝμν that controls the propagation of
the waves. Note that, once the vector of discontinuity kμ is
a gradient, discontinuities of the field ϕ propagate through
null geodesics in the effective metric ĝμν, i.e.,

ĝμνkα;μkν = 0, (206)

where “;” stands here for the covariant derivative evalu-
ated with the effective metric. The inverse ĝμν of (205) is
obtained through the condition ĝμαĝαν = δ

μ
ν :

ĝμν = 1

Lw

ημν − 2Lww

Lw (Lw + 2wLww)
∂μϕ∂νϕ. (207)

We remind that the determinant of a mixed tensor T = T α
β

may be expressed in terms of traces of its powers as we
exhibited in the first section as an immediate consequence
of the Cayley-Hamilton theorem. Applying this formula to
evaluate the determinant of the effective metric (205), one
obtains, after a straightforward calculation,

√−ĝ = L−2
w

(

1 + 2
Lww

Lw

w

)−1/2

. (208)

Note that, the square-root of the determinant is real only if
the condition

1 + 2wLww/Lw > 0 (209)

is satisfied. This is the same as to guarantee the hyperbolic-
ity of the equations of motion and henceforth the existence
of waves. Nevertheless, we remark that the effective metric
that controls the propagation of these waves is not unique
and is determined up to a conformal factor. However, as
it occurs in typical nonlinear theory, the dynamics is not
conformal-invariant.

Since the scalar field “see” the effective geometry, one
can ask for nonlinear Lagrangians leading to a given
effective geometry in a fixed background. To this end,
one proceeds by choosing a Lagrangian, determining the
corresponding effective geometry and solving the Euler-
Lagrange equations for ϕ. Unfortunately, since the effective
metric depends on the field, such an approach is often
intractable. A convenient means to simplify the problem is
to choose Lw + 2wLww; this allows to partly control the
interplay between the Lagrangian and the effective geom-
etry (207). Let us examine the simplest case where Lw +
2wLww = 1 = 1 which we use hereafter. This choice obvi-
ously simplify (207). This equation can be straightforwardly
integrated to yield

L = w + 2λ
√
w + C, (210)

where λ is a non-zero c-number and C a constant with
respect to w, in particular one can setC = −V (ϕ). This case
is worth of considering in particular because of the proper-
ties it provides for the effective metric, but besides this, it
can be understood as a perturbation of the standard linear
theory. Just to present a toy model that corresponds to a spe-
cific “fake inflation,” we will restrict the case in which the
potential take the form [77]

V (ϕ) = −λ2e− 2H
λ
ϕ

(

1 + e− 2H
λ
ϕ

2

)

. (211)
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8.2 Effective FRWMetric in a Minkowskian
Background

We consider the background metric as the Minkowski met-
ric ημν in Cartesian coordinates and a field ϕ depending
only on time ϕ = ϕ(t) and satisfying the Lagrangian (210).
The effective metric ĝμν felt by ϕ is a spatially flat FRW
metric:

ds2 = dt2 − a2(t)
(

dr2 + r2d�2
)

. (212)

Since ϕ do not depends on spatial coordinates, the Euler-
Lagrange equations reduce simply to:

ϕ̈
(

Lw + 2(ϕ̇)2Lww

)

= −1

2

δV

δϕ
,

where a dot means a derivative with respect to the time.
Now, the effective invariant length element reads

ds2 = ĝμνdx
μdxν = dt2 − 1

Lw

(

dr2 + r2d�2
)

. (213)

Note that 2Lww = 1 − Lw leads to ĝt t = 1. Let us set the
expansion factor on the effective FRW geometry to an infla-
tionary form: a(t) = eHt , H being a real positive parameter.
For that choice, the equation a(t)2 = 1/Lw leads to

√
w = λ

e−2Ht − 1
. (214)

Since
√
w is positive, λ must be negative. Assuming ϕ̇ � 0

(calculations for ϕ̇ � 0 are analogous), the above equation
can be integrated to:

ϕ = λ

2H
ln(e2Ht − 1) + K, (215)

where K is a constant, which we set equal to zero. Solv-
ing (215) for t allows to obtain precisely the form exhibited
in Eq. (211) of the potential. In other words, observation of
the effective geometry ĝμν would led us to believe, erro-
neously, that we are in a de Sitter geometry. Although it is
a toy model [153], a similar situation can occur for other
nonlinear theories.

We note that the covariant metric tensor of the effective
metric defined by the relation ĝμνg

νλ = δλμ, is given by

ĝμν = 1

Lw

gμν − 2Lww

Lw (Lw + 2wLww)
∇μϕ ∇νϕ . (216)

A straightforward calculation shows that the evaluation of
the determinant of the effective metric yields

det ĝμν = L3
w (Lw + 2wLww) . (217)

It then follows that the unique theory that can be written in
terms of its associated effective metric is the one provided
by the BI-like form

LBI = −√
bw + e , (218)

where b and e are constants.

The energy density and pressure of the effective fluid
description for the BI dynamics (from 218)

ρ = e/
√
bW + e , p = −√

bW + e (219)

are such that the equation of state takes a very simple form

p = − e

ρ
. (220)

A fluid with the above equation of state is known as
Chaplygin gas [112].

9 The Method of the Dynamical Bridge

Linear Maxwell theory and Born-Infeld electrodynamics
are distinct theories. Not only do they describe config-
urations that are not similar but also provide different
answers for a same problem. Although such trivial statement
seems obvious, it is possible to bypass its constrains and
define a framework that exhibits a dynamical equivalence
of these two theories. How is it possible? The dynami-
cal bridge consists precisely in a scheme in which such
similarity is present. The key point to understand such
proposal is related to the distinction of the background
space-time structure. We shall see that it is possible to map
the dynamical properties of Maxwell theory written in a
Minkowski space-time into the Born-Infeld electrodynam-
ics described in a curved space-time, which is defined in
terms of the electromagnetic field itself. It is clear that when
considered in whatever unique metrical structure, these two
theories are not the same; they do not describe the same
phenomena. However, we shall see that by a convenient
modification of the metric of the background structure, an
unexpected equivalence appears that establishes a bridge
between these two theories making they represent the same
situation. In other words, we shall prove that a given dynam-
ics described in a space-time can be mapped in another
theory in a modified metric structure. We shall prove
this for different kinds of fields, e.g., scalar, vector and
spinors.

The main difference between the method of the equiva-
lent metric and the one used in GR concerns the uniqueness
of the geometry. In the latter, due to the universality of the
metric, the gravitational field should also be described in
the same and unique geometry once the gravitational field is
identified with this geometry. Let us now describe a distinct
situation in the equivalent DM and show how it is possible
to represent the dynamics of the scalar field in terms of the
associated DM. To clarify our description, we compare it
with the procedure used in GR.
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9.1 Exceptional Dynamics

In recent years, intense activity on analogue gravity has
been developed [162]. This was concentrated in nonlinear
electrodynamics, acoustics, hydrodynamics, optics inside
media, and various condensed matter systems. This term
(analogue gravity) implies the description of distinct phys-
ical processes as modifications of the geometrical structure
of the background space-time. Until now, this analogy had
been limited to perturbed aspects restricting it to the propa-
gation of excitations (photons and quasi-particles) through a
medium or a background field configuration. However, it is
possible to go one step ahead and provide an example which
goes beyond this limitation describing dynamical features
of fields in terms of their respective effective metric [152].

We will analyze this in two steps. In the first moment,
we will deal with the effective metric that was used to rep-
resent the propagation of the discontinuities. This special
case is not very general and that is the reason to call the
dynamics that are examples of this method as exceptional.
In a second stage, we will deal with a far reaching structure
that concerns the complete equivalence without a stringent
limitation of the dynamics. In other words, we would like
to stress that in this general case the dynamical aspect has
nothing to do with mimicking Einstein’s equations through
effective metrics as we did before.

The main steps to achieve this result are the following:

• Consider a nonlinear field theory described in a flat
Minkowski background.

• Note that the propagation of the discontinuities of the
field leads to the raising of a second metric ĝμν such
that the path of the waves are null geodesics in this
effective geometry.

• There exists a special class of theories such that its
corresponding dynamics (which we will deserve the
name exceptional) can be described alternatively as the
gravitational interaction of the field in a given curved
geometry.

• The geometry of such gravitational space-time is pre-
cisely the effective metric ĝμν.

Thus, it is possible to claim that the self-interaction
described by exceptional dynamics is described in an equiv-
alent way as the gravitational interaction of the field with its
own effective metric. For pedagogical reasons, we start our
analysis with the simplest case of nonlinear scalar fields.
Generalization to other cases will be described later on.

Let us note that the discontinuities of the field propagate
in a curved space-time, although the field ϕ is described by
a nonlinear theory in Minkowski geometry [152].

In the framework of GR, it is the presence of gravity
that allows the existence of curvature in the geometry. This
has led to the interpretation of the dispersion relation of

nonlinear fields in terms of an effective metric as nothing
but the simplification of its description, that is, a matter of
language.

At this point, we face the following question: is it possi-
ble that among all nonlinear theories one can select a special
class such that the dynamics of the field itself is described in
terms of the effective metric? That is, can the dynamics of
the field be unified with the propagation of its waves such
that just one metric appears? Let us emphasize that this is
not equivalent to the known property—that occurs in hydro-
dynamics (and also in field theory)—that the characteristic
propagation of the field coincides with the propagation of
its perturbations.

If such quality is possible, then the equation of evolu-
tion of ϕ is equivalent to a sort of gravitational interaction
between ϕ and its effective metric. This means that the equa-
tion of motion (201) can be written under the equivalent
form

̂�ϕ ≡ 1√−ĝ
∂μ

(
√−ĝ ∂νϕ ĝ

μν
)

= 0. (221)

In general, it is not possible to rewrite the nonlinear equation
(201) in the above form for an arbitrary lagrangian. How-
ever, we will show that there exist some special situations
where this implementation becomes feasible. We first note
the following relation

∂νϕĝ
μν = (Lw + 2wLww)∂νϕη

μν. (222)

It then follows that the dynamics described by (201) and
(221) will be the same, provided the Lagrangian satisfies the
condition

Lw = √−ĝ(Lw + 2wLww). (223)

Using the expression for the determinant (208), the equiva-
lence is provided by the nonlinear differential equation for
the lagrangian

2wLww + Lw − L5
w = 0. (224)

We will call the system described by Lagrangians that sat-
isfies condition (224) as Exceptional Dynamics. In other
words, nonlinear systems described by exceptional dynam-
ics may be alternatively interpreted as fields gravitationally
coupled to its own effective geometry. Thus, the field and
the corresponding waves agree in the interpretation that the
geometry of the space-time is given by ĝμν.

Equation (224) is such that the first derivative of the
lagrangian with respect to w may be obtained explicitly.
Indeed, one obtains that
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Lw = ± 1

(1 − λw2)
1
4

, (225)

where λ is an arbitrary real positive constant. The general
solution of Eq. (224) may be obtained as an infinite series
given by the hypergeometric function

L(w) = ±w hypergeom

([

1

4
,

1

2

]

,

[

3

2

]

, λw2
)

. (226)

We note that this dynamics is such that the admissible values
of w are restricted to the domain w2 < λ. Thus, the theory
naturally avoids arbitrarily large values of the kinematical
term. Second, the lagrangian is a monotonic function of w
as an immediate consequence of Eq. (225). Third, it admits
the linear theory as a limiting case for small values of w.
Lastly, the resulting function is odd, i.e., L(w) = −L(−w).

It is instructive to expand the exceptional lagrangian to
obtain a clear idea of its behavior in terms of λ, obtaining

L(w) = w + λ

12
w3 + λ2

32
w5 + 15λ3

896
w7 + O[x]9 (227)

For small values of the constant (λ � 1), the exceptional
lagrangian reduces to a cubic expression. We can arrive
at this result assuming from the beginning a lagrangian
in the vicinity of the linear theory of the form L(w) =
w+εf (w) with ε2 � ε and solving the simplified equation
wfww − 2fw = 0. The linear theory is obviously recovered
when λ = 0, implying that both the discontinuities and the
field dynamics are represented in the same effective metric
structure, that is, ημν .

Then, we have examined the case in which a self-
interacting scalar field generates a geometrical arena for its
own propagation. A simple extension can be elaborated in
such a way that the original theory, describing the dynam-
ics of the scalar field in a flat Minkowski arena, can be
alternatively described as the gravitational interaction of the
field. Then, a non-expected result appeared: the metric field
that describes this gravitational effect is nothing but the
same effective metric that controls the wave propagation.
In other words, both the propagation of the field disconti-
nuities and the field dynamics are controlled by the same
metric structure. The nonlinearities are such that the equa-
tions in Minkowski space-time mimic the dynamics of a
“free-field” embedded in a curved space-time generated by
the field itself.

Let us summarize the novelty of such analysis:

• For any field theory described on a Minkowski back-
ground by a nonlinear Lagrangian L = L(w), the
discontinuity of ϕ propagates as null geodesics in an
effective metric ĝμν.

• As such, the theory presents a duplicity of metrics: the
field is described in flat Minkowski space-time and its
corresponding waves propagate as null geodesics in a
curved geometry.

• It is possible to unify the description of the dynam-
ics of ϕ in such a way that only one metric appears.
This is possible for those Lagrangians that represent
exceptional dynamics.

• In this case, the self-interaction of ϕ is described equiv-
alently as if it was interacting minimally with its own
effective geometry, allowing the interpretation in terms
of an emergent gravitational phenomenon.

The structure of the nonlinear equations of motion
suggests that the previous procedure can be adapted to
other structures like nonlinear electrodynamics in a moving
dielectric, vector, and tensor field theories.

9.2 Dynamical Bridge: The Case of Scalar Fields

In the precedent sections, we have displayed the possibil-
ity of using the modification of the geometry of space-time
to describe paths of accelerated particles, massive or not,
in flat or curved backgrounds. These proposals are generi-
cally called analogue models of gravity, once they use the
main idea of GR to map accelerated bodies in a given met-
ric structure into geodesics of a curved geometry. In the next
sections, we enter in a distinct analysis once we will deal not
with forces in a given body but we will consider how differ-
ent fields obeying a given nonlinear equation of motion can
be described in terms of modifications of the background
geometry generated by themselves. We emphasize that this
is not a gravitational framework, as we shall see.

We start by showing how a metric qμν naturally appears
in nonlinear scalar field theories. Let us set the following
nonlinear Lagrangian in flat Minkowski space-time:

L = V (�)w, (228)

where w ≡ ημν∂μ� ∂ν�. For V = 1/2, this is just the stan-
dard free massless Klein-Gordon scalar field. In the general
case, the usual kinetic term is re-scaled by a field depen-
dent amplitude (potential) V (�). Here, we are using ημν

but we could have used an arbitrary coordinate system as
well, since the theory is generally covariant and there is no
privileged reference frame. The field equation is

1√−η
∂μ
(√−η ημν ∂ν�

)+ 1

2

V ′

V
w = 0, (229)

where V ′ ≡ dV/d� and η is the determinant of ημν.
Now comes a remarkable result: the above field Eq. (229)

can be seen as a massless Klein-Gordon field propagat-
ing in a curved space-time whose geometry is governed
by � itself. In other words, the same dynamics can be
written either in a Minkowski background or in another
geometry constructed in terms of the scalar field. Following
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the steps established previously [152], we introduce the
contra-variant metric tensor qμν by the binomial formula

qμν = α ημν + β

w
∂μ�∂ν�, (230)

where ∂μ� ≡ ημν ∂ν� and α and β are dimensionless func-
tions of �. The corresponding covariant expression, defined
as the inverse qμν qνλ = δλμ, is also a binomial expression:

qμν = 1

α
ημν − β

α (α + β)w
∂μ�∂ν�. (231)

Now we ask whether it is possible to find α and β, in such
a way that the dynamics of the field (229) takes the form

�� = 0, (232)

where � is the Laplace-Beltrami operator relative to the
metric qμν , that is

�� ≡ 1√−q
∂μ(

√−q qμν ∂ν�).

To answer this question, we evaluate the determinant q of
the metric qμν , for which a direct calculation yields

√− q =
√− η

α
√
α (α + β)

. (233)

Using the fact that qμν∂ν� = (α + β)ημν∂ν�, the final
result is summarized in the following:

Lemma 6 Given the Lagrangian L = V (�)w with an
arbitrary potential V (�), the field theory satisfying (229)
in Minkowski spacetime is equivalent to a massless Klein-
Gordon field �� = 0 in the metric qμν provided that the
functions α(�) and β(�) satisfy the condition

α + β = α3 V. (234)

Remarkably, this equivalence is valid for any dynamics
described in the Minkowski background by the Lagrangian
L. This fact can be extended to other kinds of nonlinear
Lagrangian [89].

9.3 Dynamical Bridge: The Case of Electromagnetic
Field

Recently, it was shown that the Born-Infeld dynamics in a
curved space-time endowed with an associated metric êμν
is dynamically equivalent to the linear Maxwell electrody-
namics described in a flat Minkowski background [151].
Namely, there is a map relating these two dynamics in
such a way that they are distinct representations of one and
the same physics. It means that any solution of the for-
mer will also be a solution of the latter, which is given
in terms of a preestablished map. This task is highly non-
trivial and becomes possible only if the space-time metric
depends explicitly on the electromagnetic field. Due to the

algebraic structure of the electromagnetic tensor Fμν and
its dual ∗Fμν, there are some closure relations that allow
the existence of this map, generating a connection between
those two paradigmatic theories. The apparent disadvantage
is to leave aside the simple Minkowski background ημν and
to go to a specific curved space-time êμν , which is con-
structed solely in terms of the background metric and the
electromagnetic fields. In principle, one could suspect that
this map is useless because it links a very simple electro-
magnetic theory in flat space to a nonlinear theory in a
curved space-time. Notwithstanding, recently [146], it was
shown that physical principles can guide us in the choice of
the more appropriate representation to describe the system
under consideration.

To describe a physical theory, one has to specify not only
the lagrangian that contains the dynamics of the fields but
also the space-time structure where the theory is defined.
To avoid notational cumbersomeness, we shall denote every
object in the curved space-time defined by the metric q̂μν
with an upper hat. Thus, in Maxwell’s theory, every tensor
is raised and lowered by the Minkowski metric γμν while
in the curved space-time representation, where we will con-
struct the Born-Infeld theory, shall be raised and lowered
using the êμν metric.

Let us begin with Maxwell’s theory in Minkowski met-
ric γμν is determined by the Lagrangian L = −F

4 . We set
Fμν ≡ Fαβγ

μαγ νβ and F ≡ FμνFαβγ
μαγ νβ . Born-Infeld

theory described in the curved metric êμν is determined by

the Lagrangian ̂L = β2
(

1 −
√

̂U
)

, where we thus have

̂U = 1 +
̂F

2β2
−
̂G

16β4
,

with

̂Fμν = Fαβ ê
μα êνβ, ̂F = Fμν Fαβ ê

μα êνβ, and

̂G =
√−γ√−ê

ημναβ Fμν Fαβ = ̂F ∗
μν Fμν.

The dynamical equation for the electromagnetic field in the
Born-Infeld theory is

∂ν

[√− ê

̂U

(

̂Fμν − 1

4β2
̂G ∗
̂Fμν

)

]

= 0, (235)

where ê is the determinant of the electromagnetic metric
êμν , which is defined as

êμν ≡ a ημν + b�μν, (236)

and �μν ≡ Fμα F
α
ν . Due to the algebraic relations of the

Faraday tensor (3)–(6), there is a unique way to define the
electromagnetic metric where a and b are functions of the
Lorentz invariants F and G and �μν ≡ FμαFα

ν .
The term electromagnetic metric is justified by the fact

that êμν depends only on the electromagnetic field. Note
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the very convenient property that the inverse of the above
structure, which in general is given by an infinite series but
in the present case is again a binomial quantity, also as a
consequence of (3)–(6), that is

êμν = Aημν + B φμν, (237)

where A = (2 − nF)(2aQ)−1, B = −n(aQ)−1, and we
are using the definitions n ≡ b/a and Q ≡ 1 − (1/2)nF −
(1/16)n2G2.

The definition of ̂Fμν and the choice of the metric êμν
implies that these fields are related through the expression
⎛

⎝

̂Fμν

a2

∗
̂Fμν

a2

⎞

⎠ =
⎛

⎝

p − nFq −nGq
2

−nGq
2 p

⎞

⎠

⎛

⎝

Fμν

∗Fμν

⎞

⎠ , (238)

where p = 1 + n2 G2

16 and q = 1 − nF
4 .

We can interpret (238) as nothing but a map from
(Fμν, F

∗
μν) into (̂Fμν, ̂F

∗
μν). Substituting this equation in

(235) and making the requirement that Born-Infeld dynam-
ics in the êμν corresponds to the Maxwell dynamics in flat
Minkowski space-time, we obtain the following equations
for the coefficient of the electromagnetic metric [151]
⎧

⎪

⎨

⎪

⎩

p − nFq + ̂G

2β2 n q = −Q
4 ,

−nGq + ̂Gp

2β2 = 0.
(239)

The new invariants, for instance, reads

̂F = a2
[

F − n

2
(F 2 + G2)

(

1 − nF

2

)]

, and ̂G = a2QG.

At this stage, the mapping of the two dynamical systems
sum up to make the identification term by term in both equa-
tions. In other words, choosing appropriately the unknown
function of the EM metric (236), Maxwell’s equation in
Minkowski geometry and Born-Infeld in this curved space-
time êμν describes one and the same dynamics for the
electromagnetic field. Our task consists in a direct compar-
ison of the Maxwell equations in the background ημν with
Born-Infeld dynamics in the background êμν .

Equating terms proportional to Fμν and to ∗Fμν , we find
the following conditions to be fulfilled in order to obtain the
equality of the dynamics

a2Q2

2β2
= −nq (240)

p − nqF =
√

̂U

Q
(241)

In the above equations, we are considering a and n as the
unknown functions and Q and ̂U as functions of the form-
ers. Having two equations and two unknown, one can solve
to find the two functions, hence, the metric (236). How-
ever, using Eq. (240), it follows immediately that Eq. (241)

trivialize to 1 = 1, i.e., if (240) is satisfied then (241) is
also immediately satisfied. Thus, the proof of equivalence
of both dynamics (Maxwell in Minkowski space-time and
Born-Infeld in ê metric) reduces to state that a and n sat-
isfy the constraint (240). Note that the Bianchi identities
in the electromagnetic metric êμν is identically satisfied.
Thus, we have shown that there exist a complete equiv-
alence between the two representations, i.e., Born-Infeld
theory represented in the space-time with electromagnetic
metric êμν is equivalent dynamically to Maxwell’s theory in
Minkowski background. We would like to emphasize that
although the two metrical structures are different, we are
dealing with two representations of the same and unique
dynamical process.

Beside the freedom in one of the functions that define
the metric êμν , which seems to be related to the confor-
mal invariance of Maxwell’s equations, there are still some
conditions that constrict these functions. A straightforward
calculation using the Cayley-Hamilton theorem (see the first
section) shows that the determinant of the metric (237) is√−ê = a−2Q−1√−γ . Therefore, Q that is a function of
n has to be positive definite, i.e., Q > 0. In addition, we
want the map to be for any solution of Maxwell’s equations,
hence for any value of the two invariants F and G. Let us
investigate some particular regimes.

(i) case F = 0: In this case, Eq. (240) demands that n < 0.
Furthermore, by its own definition n = − 4

G

√
1 − Q,

which restrict Q to the domain 0 < Q ≤ 1.

(ii) case G = 0: the relation between n and Q now gives
n = 2

F
(1 − Q). In addition, from (240), we can solve

for the function a as

a = β

|Q|
√

2

F

(

Q2 − 1
)

. (242)

Since a is a real function, we have

G = 0 →
{

F > 0, and Q > 1
F < 0, and 0 < Q < 1

(iii) case F = G = 0: the vanishing of both invariants
simultaneously, which is the case for plane waves, triv-
ialize all conditions. In fact, we simply have Q = 1 and
a2 = −2β2 n. Thus, it suffice to have n < 0.

Having established the connections between Maxwell’s
electromagnetism and Born-Infeld theory, we can now ana-
lyze some examples of metrics generated by this mapping.
Maybe the most interesting class of examples are theG = 0,
which includes the pure electrostatic or magneto-static field
case. Let us consider G = 0, i.e.,

Q = eF/4β2
and a = β

Q

√

2

F

(

Q2 − 1
)

.
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There are three limiting cases: weak fields |F | � 1,
strong electric field F � −1, and strong magnetic field
F � 1. When (i) |F | � 1, we expand Q and a in pow-
ers of F and find the electromagnetic metric in first-order
corrections as

q̂μν = ημν + 1

2β2
Fμ

αFαν; (243)

for F � −1 (ii), we have Q = eF/4β2
, a ≈ β

√

2
|F |e

−F/4β2

and the metric assumes the form

êμν ≈ 1

β

√

2

|F | Fμ
α Fαν. (244)

Finally, (iii) for F � 1, it gives a metric of the form

êμν ≈
√

F

2β2
ημν (245)

Consider the regime in which the electromagnetic field
is very low in comparison to the critical field, i.e., F � β2

(case i). Then, we perform a power series expansion in terms
of F/2β2 for the objects associated to the bridge and see
that, in this regime, the electromagnetic metric reduces to
the form

êμν ≈ ημν + 1

2β2
�μν. (246)

From now on, we keep this expression for the metric.
Remark that it is possible to interpret the presence of the
electromagnetic metric as a small deviation from the flat
space-time generated by the electromagnetic field. From
the dynamical bridge between the equivalent representa-
tions, it follows that we can describe pure electromagnetic
phenomenon either in terms of Maxwell theory in flat
Minkowski space-time or as Born-Infeld dynamics in the
electromagnetic curved geometry.

Henceforth, we denote Maxwell-Minkowski (MM) rep-
resentation the case where one chooses to describe electro-
magnetic processes in the linear Maxwell theory in the flat
Minkowski space-time. On the other hand, when one applies
the dynamical bridge approach and describes the same
processes in the nonlinear Born-Infeld theory in a curved
space-time driven by the metric êμν , it will be denoted as ̂E-
representation. Let us emphasize that these representations
describe one and the same dynamics.

The Role of the Electromagnetic Metric The presence of
a curved structure of the space-time in the realm of electro-
magnetic fields can be an important theoretical instrument
of analysis only if one introduces a prescription of how
matter perceives this geometry. Then, the question is: how
matter interacts with the electromagnetic metric? This ques-
tion appears immediately as long as one wants to explore
this metric formulation in the presence of matter.

Recently [146], the idea was proposed to interpret the
action of electromagnetic metric in a similar way as in grav-
itational processes assuming that through this geometric
channel all particles display the same behavior. The state-
ment that defines a universal hypothesis of electromagnetic
interaction takes the following form: all kind of particles,
charged or not charged, interacts with the metric êμν in a
universal and unique way.

The simplest manner to realize this hypothesis is by using
the minimal coupling principle that we borrow from grav-
itational processes as they are described in GR. Although
this hypothesis may appear, at first glance, useless or even
no sense for traditionalists, we shall see that it contains a
well-posed program with observational consequences that
could prove or disprove it. In order to proceed with this idea,
we examine the case of test spinor fields in this background
and investigate what new effects one can extract from this
geometrical scenario.

The extended dynamical bridge concerns the behavior
of all kind of matter. In the ̂E-representation, the assump-
tion of complete democracy—that is, the idea that any
kind of matter, charged-or-not, lives in the geometry êμν—
implies an equivalent effect in the MM-representation. In
particular, the equation of motion of the neutrino in the
electromagnetic geometry provokes the need to assume a
direct interaction between the neutrino and the electromag-
netic field in the MM-representation. Indeed, one is led to
accept that in this representation, there should exist an extra
term in the Lagrangian which is the analogue of the min-
imal coupling principle between electromagnetic field and
the neutrino embedded in the metric êμν . We shall see that,
for instance, the role of the parameter β that appears explic-
itly in the ̂E-representation, becomes the ratio between
the magnetic moment of the particle and its corresponding
mass.

Minimal Coupling Principle Let us describe the elec-
tromagnetic effects on the spinor field equation in the
̂E-representation. We explore the equivalence displayed by
the dynamical bridge and deal with an extended version of
the way matter interacts with the electromagnetic field. It is
a universal and well-accepted belief that only charged mat-
ter is able to couple directly with the electromagnetic field.
Nevertheless, from what we have shown above, the anal-
ysis in the ̂E−representation allows a new possibility of
interaction.

The equivalence between the Born-Infeld theory in the
̂E-representation and the Maxwell dynamics in flat space
was shown only in the case of free fields. We examine now
the extension of such an equivalence by assuming that mat-
ter couples universally to the electromagnetic field in the
êμν framework. Following this approach, let us investigate
the consequences of the coupling in the ̂E-representation.
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We start by noticing that it yields two possible forms of
interaction of the matter with the electromagnetic field, that
is: (i) through the vector potentialAμ; (ii) through the metric
tensor êμν .

Once only the geometrical form of interaction was not
considered before, we will concentrate our analysis here on
this second way. Let us point out that the existence of the
electromagnetic geometry makes sense and may have fur-
ther consequences only if this geometry is perceived for all
kind of matter. This means that a test particle can couple to
the electromagnetic field without having electric charge or,
more precisely, if a particle has an electric charge it couples
with the electromagnetic field through the standard chan-
nel via the potential Aμ. Otherwise, it interacts with the
electromagnetic geometry in an unique and the same way,
according to the minimal coupling principle stated above.
What are the main consequences of this hypothesis? That is
the purpose of the next section.

9.4 A Proposal for the Origin of the Anomalous
Magnetic Moment

Few years ago, a new form of contribution for the anoma-
lous magnetic moment of all particles was suggested [146].
This common origin is displayed in the framework of a
recent treatment of electrodynamics that is based in the
introduction of an electromagnetic metric which has no
gravitational character as we commented above. This effec-
tive metric constitutes a universal pure electromagnetic
process perceived by all bodies, charged or not charged. As
a consequence, it yields a complementary explanation for
the existence of anomalous magnetic moment for charged
particles and even for non-charged particles like neutrinos.

In the standard model of particle physics, neutrinos pos-
sess the most intriguing and interesting behavior. It is under-
stood that they have only gravitational and weak interaction,
although some extensions of the standard model allow that
neutrinos could have an effective magnetic moment [14,
17, 125, 134]. For any charged particle, the classical mag-
netic moment (μ) is inversely proportional to the mass
μ = e�/2m, where � is the reduced Planck constant, e
is the elementary charge, and m is the mass of the par-
ticle. In the case of electrons, for example, μ ≡ μB =
e�/2me is the Bohr magneton. However, in the case of
neutrinos ν, it has been suggested that μν depends lin-
early on the neutrino mass. As a consequence, this type of
coupling between the spinor field and the electromagnetic
field presents some difficulties concerning the variational
principle and the re-normalization process.

The idea proposed is that the magnetic moment of any
particle is composed of two very distinct parts: the stan-
dard one that depends on the charge of the particle—from
dimensional analysis, it is inversely proportional to the

corresponding mass—and another part (called the geomet-
rical magnetic moment) that depends linearly on the mass.
This second case, which is many orders of magnitude lower
than the standard one, is common for all particles and does
not depend on their charge. In other words, we shall see that
part of the anomalous magnetic moment of charged particles
is a consequence of such geometrical magnetic moment and
for neutral particles, like neutrinos, such proposal provides
a nonzero magnetic moment. We shall compare the effects
of both terms from experimental data.

Of course, this idea is based on the equivalence between
the electromagnetic Born-Infeld theory in a specific curved
geometry and Maxwell’s theory in the Minkowski space-
time, as we have revisited previously. This means that any
solution of the former is also a solution of the latter, which is
given in terms of a prescribed map. This is possible because
the associated curved space-time depends only on the elec-
tromagnetic fields. Indeed, due to the algebraic structure of
the electromagnetic two-form Fμν and its dual, there exist
a kind of closure relation that allows the existence of this
mapping, thus generating a dynamical bridge between these
two paradigmatic theories.

The application of the dynamical bridge to specific sit-
uations suggests a new manner to understand the origin of
the anomalous magnetic moment, which depends linearly
on the mass, as a direct consequence of the electromagnetic
geometry as we shall analyze next.

The ̂E-Metrical Origin of the Neutrino Magnetic
Moment In the case of neutrinos, which are uncharged,
there is only the geometrical channel to couple with the elec-
tromagnetic field. We will apply the minimal coupling prin-
ciple in the ̂E-representation and analyze the consequences
of this in the Maxwell-Minkowski representation.

We start by defining the Dirac matrices γ̂ α associated to
the curved space by the relation

{γ̂ μ, γ̂ ν} = 2 êμν 1, (247)

where 1 is the identity matrix of the Clifford algebra and the
curly brackets means anti-commutation. Analogously, in the
MM-representation, we have

{γ μ, γ ν} = 2 ημν 1. (248)

It then follows that we can set

γ̂ μ = γ μ − 1

4β2
�μ

αγ
α (249)

and the closure relations above are automatically satisfied.
Therefore, the dynamical equation for the spinor field, in the
metric êμν , becomes

i�c γ̂ μ
̂∇μ � − mc2 � = 0. (250)
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The covariant derivativê∇μ ≡ ∂μ−̂�FI
μ −̂Vμ is given by the

Fock-Ivanenko coefficients ̂�FI
μ plus an arbitrary element

of the algebra [143], which yields

̂∇μ γ̂
ν = [̂Vμ, γ̂ ν], (251)

still holding the metricity condition ̂∇α q̂
μν = 0. The

presence of Vμ suggests that the interaction between the
electromagnetic field and � occurs through the internal
space. In the absence of any kind of matter, we are free to
assume that the commutator on the right-hand side of (251)
vanishes. However, when matter (of any kind) exists, ̂Vμ
depends simultaneously on the electromagnetic field and on
the properties of the matter field and, in the case of spinors,
we set

̂Vμ = i
m c

�β
Fμν γ̂

νγ5, (252)

where m is the neutrino mass in the minimal extended
version of the standard model. In the general case, it
was demonstrated that ̂V μ must transform like the Fock-
Ivanenko connection in order to verify the conservation laws
[78]. Thus, according to the choice of ̂V μ given by (252),
that contains the anti-symmetric tensor Fμν , guarantees the
conservation law. In order to guarantee that we are dealing
only with uncharged particles, we assume that the Fock-
Ivanenko connection does not have any term proportional to
the identity 1. It should be remarked that even if we consider
massless neutrinos, we can rewrite ̂Vμ is terms of the neu-
trino energy and then the coupling to the electromagnetic
field is still present. This replacement of m by E suggests
that such interaction should be investigated in different sce-
narios where the right-handed neutrinos could appear [83,
183].

Using (246) and (252) into the equation of motion (250),
we get

i �c γ μ∂μ � + mc2

β
Fμν σ

μνγ5 � − mc2 � = 0, (253)

which, according to the regime under consideration, cor-
responds to the first-order approximation in F/2β2 where
σμν = (γ μγ ν − γ νγ μ)/2.

The effect of the universal minimal coupling between
matter of any kind and the electromagnetic field using the
metric êμν provides an effective magnetic moment that
depends on the mass of the spinor field and on the parameter
β, that is

μG
.= mc2

β
. (254)

Remarkably, the hypothesis of universality of êμν reveals
the existence of an alternative origin for the magnetic
moment of all particles (charged or not) from first princi-
ples. If we had applied the minimal coupling principle to

the MM representation, we have never obtained such term.
In this representation, it corresponds to a non-minimal cou-
pling, leading to some difficulties to be interpreted inside
the standard approach, as pointed in the literature. The com-
patibility of this result induced by the ̂E-representation in
the MM-representation implies that the Lagrangian describ-
ing the interaction between the neutrino and the electromag-
netic field contains an extra term in the MM-representation
which is usually introduced by hand and without further
justification. In other words, the presence of a magnetic
moment for the neutrino in the standard MM-representation
should not be viewed as an exotic surprise but instead
should be understood—on the light of the Dynamical Bridge
method—as a consequence of the universality of the geom-
etry êμν in the ̂E-representation. Next section, we shall
introduce this map for charged particles and then compare
with experiments.

The Geometrical Magnetic Moment for Charged Par-
ticles It is important to emphasize that the value of the
magnetic moment obtained in the previous section contains
only the general contribution for any particle. Charged parti-
cles have an extra source for μ that is related to their charge,
for instance, the Bohr magneton μB = e �/2me for the elec-
tron. Thus, the total value of the electron magnetic moment
(μe) should be read as

μe = μB + me c
2

β
+ quantum corrections.

The first part corresponds to the standard magnetic moment,
the second one corresponds to the ̂E−metrical contribution,
and the last one comes from loop-quantum corrections. A
comparison with theoretical predictions and experiments [8,
38, 42, 95, 118, 132, 165] is presented in the original paper
[146].

9.5 Dynamical Bridge: The Case of Spinor Fields

In the precedent sections, we have shown how fundamental
fields can satisfy equivalent dynamical equations in differ-
ent background geometries. Namely, a given nonlinearity of
the field in the flat space can be hidden in the curvature of
an effective curved space. This was shown to be true for
spin 0 and 1 fields [89, 146, 147, 151, 152] and can also
be applied in the kinematical context as we described in
this review [144, 145]. In this section, we complete our task
and demonstrate that such procedure also holds for spinor
fields. In particular, we shall see that the self-interacting
term of the Heisenberg-Nambu-Jona-Lasinio (HNJL) model
[97, 100, 139, 140] can be derived from the minimal cou-
pling of a Dirac field with an effective curved geometry.
This Dynamical Bridge goes together with the chiral sym-
metry breaking for massive and massless spinor fields if
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the coupling constant is sufficiently large. This approach
was suggested recently [20] as providing a new geometri-
cal explanation for the non observation of the right-handed
neutrinos.

Let � be a massless spinor field satisfying the Dirac
equation

iγ̂ μ
̂∇μ� = 0

in a curved background (with no gravitational character) and
assume that such curved geometry represents the modifica-
tion of the flat space caused by the field � itself through the
specific form of the metric:

ĝμν = ημν + 2α HμHν. (255)

The arbitrary function α depends on the scalars A ≡ �̄�

and B ≡ i�̄γ5�. The vector Hμ is given in terms of the
vector Jμ and axial Iμ currents. It was proved that the Dirac
equation in such curved space-time is dynamically equiv-
alent to the dynamics of Nambu Jona-Lasinio equation in
the flat Minkowski space-time. Afterwards, we rewrite this
dynamics in Minkowski space (equipped with the metric
ημν). This leads to the two following equations

iγ μ∂μ�L = 0, (256)

iγ μ∂μ�R + s(A + iBγ5)�L = 0, (257)

where s depends on α and its derivatives, �L ≡ (1/2)(1 −
γ5)� and �R ≡ (1/2)(1 + γ5)� are respectively the left-
handed and right-handed chirality components of �, with
� = �L + �R . The left-handed component still obey the
Dirac dynamics in Minkowski space while the right-handed
component verifies the Eq. (257), which is a generalization
of the HNJL dynamics. The curvature of the effective space
goes to the nonlinearity of HNJL dynamics in Minkowski
space, but only for the right-handed component of the spinor
field. This introduces a new answer to the experimentally
observed chiral symmetry breaking of neutrinos and stands
as an alternative for the standard model interpretation which
assumes that right-handed neutrinos do not exist, i.e., they
do not interact through the standard model forces.

Overview on the Mathematical Tools for the DB In
order to properly construct the Dynamical Bridge for spinor
fields, let us describe some mathematical ingredients. It
is well known that any metric tensor ĝμν can always be
decomposed into

ĝμν = gμν + �μν, (258)

where gμν is some background metric and �μν is a rank
two tensor field. As we discussed before, this metric ten-
sor admits an inverse with the same binomial form if we
impose the condition �μν �νλ = p δ

μ
λ + q �μ

λ, where
p and q are arbitrary functions of the coordinates. For the

sake of simplicity, we set the background metric gμν to
be the Minkowski one ημν in arbitrary coordinate systems.
For eventual generalizations concerning the background, we
refer to the Damião-Soares lectures [188].

With a generic spinor field �, we construct two scalars
A ≡ �̄� and B ≡ i�̄γ5� and two currents defined as
Jμ ≡ �̄γ μ� and Iμ ≡ �̄γ μγ5�. The γ μ’s are the Dirac
matrices which satisfy the closure relation of the Clifford
algebra. Using the Pauli-Kofink identity for an arbitrary
element Q of the Clifford algebra

(�̄Qγλ�)γ λ� = (�̄Q�)� − (�̄Qγ5�)γ5�, (259)

the following relations are easily derived J 2 = −I 2 = A2+
B2 and JμI

μ = 0, where X2 ≡ ημν X
μXν for the vectorial

objects.
Here, the method consists in writing �μν of the curved

space-time metric (258) in terms of the dynamical field,
which is given by the spinor �. The simplest way to do this
is to set

�μν .= 2α HμHν, (260)

where Hμ .= Jμ + εIμ is a linear combination of the
currents, ε is an arbitrary constant, and α is an arbitrary
function of A and B. (259) leads to the following identities

Hμγ
μ � = (1+εγ5)(A+iBγ5)�, and H 2 = (1−ε2)J 2.

(261)

Finally, using the relation ĝμν ĝνλ = δ
μ
λ, the metric tensor

and its inverse can be written as

ĝμν = ημν + 2α HμHν,

ĝμν = ημν − 2α
1+2αH 2 HμHν.

(262)

Introducing the Weyl-Cartan formalism [36, 204], we
define two tetrad bases eμA and êμA which relate the tan-
gent space provided with the metric ηAB to the physical
spaces endowed with the two metrics ημν and ĝμν . The two
bases satisfy the following relations

ĝμν = ηAB êμA ê
ν
B, and ημν = ηAB eμA e

ν
B, (263)

where once more Greek indices refer to the physical spaces
and are manipulated with ημν or ĝμν , while Latin indices
refer to the tangent space and are operated by ηAB =
diag(1,−1,−1,−1). The inverse tetrad bases eμA and êμ

A

should satisfy eμ
A eνA = êμ

A êνA = δνμ and eμ
A eμB =

êμ
A êμB = δAB . Furthermore, any vector Xμ (or ̂Xμ) in the

space-time ημν (or ĝμν) has a counterpart XA ≡ eAμX
μ (or

̂XA ≡ êAμ
̂Xμ) in the internal space. In particular, for the

Dirac matrices, we assume that

γ A = êμ
A γ̂ μ = eμ

A γ μ, (264)

where γ A’s are the constant Dirac matrices. Note that the
γ̂ μ’s also verify the algebra related to the curved space ĝμν .
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For consistency with (262), the two tetrad bases must
obey a condition like

êμA = eμA + β HAH
μ, (265)

with the constraint α = 2β/(2 + βH 2) in this case.
Therefore, the inverse tetrad bases are such that

êμ
A = eμ

A − β

1 + βH 2
HAHμ. (266)

Then, we end the overview on the tetrad formalism we need
to deal with the bridge between the spinorial dynamics (a
generalization of this approach can be found in [21]).

The Hidden Breaking of Chiral Symmetry Now, we
describe how the Dynamical Bridge works for spinor fields.
As mentioned before, we start with the linear Dirac equa-
tion in an effective curved background then we expand
the formulas to reach a new and different, though physi-
cally equivalent, dynamics in the Minkowski background.
The resulting equation is a generalization of the HNJL
dynamics.

In the effective curved geometry given by (262), Dirac
equation for the spinor field � reads

iγ̂ μ
̂∇μ� = 0, (267)

where ̂∇ ≡ ∂μ − ̂�μ and the Fock-Ivanenko connection.
Introducing the tetrads allows to rewritê�μ as

̂�A = ê
μ
A
̂�μ = −1

8
γ̂BCA[γ B, γ C], (268)

which is called spin connection and is defined by

γ̂ABC = 1

2
(̂CABC − ̂CBCA − ̂CCAB), and

̂CABC = −êνAê
μ[BêνC],μ. (269)

Note that ̂CABC = −̂CACB and, consequently, γ̂ABC =
−γ̂BAC .

Setting ε = −1, the spinor field (267) takes the following
form in the flat space

i

(

γ μ∂μ + βγ μHμH
ν∂ν + β

4
Ḣμγ

μ + β̇

2
Hμγ

μ

)

� = 0,

(270)

where Xμ ≡ Xμ,νH
ν . This nonlinear dynamical equation

for � originates from the curved space connection inter-
preted as self-interacting terms in the Minkowski space (for
nonlinear spinor equations see [79] and references therein).
In particular, there is a set of solutions of (270) provided by
the Inomata [109] condition�,μ = −(1/2)β̇Hμ�, will lead
to the chiral symmetry breaking without any assumption on
β.

In the standard model, the right-handed neutrinos are
not present since weak interactions couple only with the

left-handed neutrinos. However, since 1998, various inde-
pendent and different experiments have detected their fam-
ily oscillation [16], indicating that neutrinos are massive
and break the chiral symmetry. A natural question appears:
where are the right-handed neutrinos? There are two possi-
ble answers: either neutrinos are of Majorana type or they
do not interact weakly. Several experiments have unsuccess-
fully tried direct or indirect detection of such neutrinos [31,
66].

Notwithstanding, a third possible explanation is provided
according to the above geometrical arguments. Indeed, in
the regime β̇ � β, when the nonlinear propagating terms of
(270) can be neglected, it reduces to

iγ μ∂μ� + i
β̇

2
(1 − γ5)(A + iBγ5)� = 0, (271)

where we used (261). This equation is similar to the HNJL
equation in Minkowski space-time. This means that the non-
linear self-interacting term can be seen as a modification of
the space-time structure. Up to this point, they are just two
equivalent equations written in two different spaces. How-
ever, let us decompose � into its chiral components, that
is

� = �L + �R = 1

2
(1 − γ5)� + 1

2
(1 + γ5)�,

where �L and �R represent the left- and right-handed
chiralities. Then, (271) splits into two distinct parts

iγ μ∂μ�L = 0, (272)

iγ μ∂μ�R + iβ̇(A + iBγ5)�L = 0. (273)

From these equations, it follows the remarkable result: each
chiral component �L and �R satisfies a different dynamical
equation in the Minkowski space. The left-handed compo-
nent propagates as a free Dirac field when the right-handed
component is trapped by the self-interacting term. If the
coupling parameter β̇ is sufficiently large, the right-handed
component needs very high energies to be detected. This
leads to a new and geometrical explanation for the non
observation of the right-handed neutrinos [20] .

10 The Theory of the Geometric Scalar Gravity

Although the possibility to eliminate accelerations of arbi-
trary bodies can be described equivalently by particular
changes on the metric of space-time, one for each body,
there is interest in following the main ideas of GR and unify
all these geometries into a single one. The path followed by
Einstein was to describe the gravitational phenomenon in
terms of a unique universal metric. The prize to pay is to
impose a dynamics for the geometry by its own. Few years
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ago [147], an alternative was proposed that received the
name of geometric scalar gravity (GSG) that do not follow
such procedure. We shall make an overview of this theory
and its main achievements, highlighting how it bypasses the
main drawbacks of the previous proposals [84, 85, 163, 171,
182, 189], describing well the local tests of gravity [3, 68,
179, 206] and can be constructed in the lines of a field the-
ory formulation [59, 75, 91, 93]. Let us start by enumerating
the main properties of GSG:

• The gravitational interaction is described by a scalar
field �.

• The field � satisfies a nonlinear dynamics.
• The theory satisfies the principle of general covariance.

In other words, this is not a theory restricted to the realm
of flat spaces.

• All kind of matter and energy interact with � only
through the pseudo-Riemannian metric

qμν = α ημν + β
∂μ �∂ν�

ηγ δ∂γ�∂δ�
. (274)

• Test particles follow geodesics relative to the gravita-
tional metric qμν.

• � is related in a nontrivial way with the Newtonian
potential �N .

The quantities α and β are functionals of � which were
specified by fixing the dynamics of the scalar field. The
auxiliary (Minkowski) metric ημν is unobservable because
the gravitational field couples to matter only through qμν ,
a hypothesis borrowed from GR where a unique geomet-
rical entity interacts with all forms of matter and energy
and the geometry underlying all events is controlled by the
gravitational phenomena.

It is worthwhile to point out that the scalar field is not
the (special) relativistic generalization of the Newtonian
potential. Indeed, following the scheme of GR [69] and
assuming that the test particles follow geodesics relative to
the geometry qμν , we have that

d2xi

dt2
= −�i

00 = − ∂i �N, (275)

where we are assuming static weak field configuration and
low velocities for test particles.

From (231), we have

�i
00 ≈ − 1

2
∂i lnα.

It follows that the Newtonian potential �N is approximately
given by

�N ≈ − 1

2
lnα,

which yields the relation between the metric and the New-
tonian potential �N as

q00 = 1

α
≈ 1 + 2�N.

Using Eq. (232) one obtains the right (vacuum) Newto-
nian limit:

∇2�N = 0.

This was the starting point of Einstein’s path in building
his tensorial theory of gravity. The geometric scalar gravity
follows another path that we describe next. From now on,
we will explore the consequences of extrapolating from the
above approximation the general expression

α = e−2�. (276)

The next task is to determine the functional dependence
of β on � or either the form of the potential V (�) as we
have presented in the Lemma 6 concerning the DB for scalar
fields, that is

β = α (α2 V − 1). (277)

The Dynamics of Scalar Gravity In (GSG), the dynamics
is controlled by the variational principle

δS1 = δ

∫ √−η d4x V (�)w,

we get:

δ S1 = −
∫ √−η d4x

(

V ′ w + 2V �M�
)

δ� (278)

where �M is the d’Alembert operator in flat space. Again,
using the Lemma 6, we rewrite the equation above as

δ S1 = − 2
∫ √−q d4x

√
V ��δ�. (279)

In presence of matter, we add a corresponding term Lm to
the total action:

Sm =
∫ √−q d4x Lm. (280)

The first variation of this term as usual yields

δSm = − 1

2

∫ √−q d4x T μν δ qμν, (281)

where the energy-momentum tensor is given by its standard
form

Tμν ≡ 2√−q

δ(
√−q Lm)

δqμν
.

General covariance leads to conservation of the energy-
momentum tensor T μν ;ν = 0. The equation of motion is
obtained by the action principle δS1 + δSm = 0. Up to this
point, we are following the paths of GR. Here, however, in
the GSG, the metric qμν is not the fundamental quantity. We
have to write the variation δqμν as function of δ�. While we
are using the unobservable background Minkowski metric
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for simplicity, at the end all expressions should be written in
terms of the gravitational metric qμν . Finally, the equation
of motion for the gravitational field � takes the form:
√
V �� = κ χ, (282)

where

χ = 1

2

(

α′

2α
(T − E) + Z′

2Z
E − ∇λ C

λ

)

,

with Z ≡ α + β, T ≡ T μν qμν , E ≡ T μν ∂μ� ∂ν�

Zw
,

Cλ ≡ β
α Z w

(

T λμ − E qλμ
)

∂μ�, and prime means deriva-
tive w.r.t. �.

Substituting α = e−2� and using the expression for the
potential derived in the original paper [147]

V = (α − 3)2

4α3

we rewrite the source term under the form

χ = 1

2

(

3 e2� + 1

3 e2� − 1
E − T − ∇λ C

λ

)

.

This equation describes the dynamics of GSG in the
presence of matter. The quantity χ involves a non-trivial
coupling between the gradient of the scalar field ∇μ� and
the complete energy-momentum tensor of the matter field
Tμν and not uniquely its trace. This property allows the elec-
tromagnetic field to interact with the gravitational field. The
Newtonian limit gives the identification

κ ≡ 8πG

c4
.

Natural Decomposition The form of the metric, contain-
ing the derivative of � suggests a simplification in the
description of the matter terms which is useful for exploring
the cosmological consequences of GSG. Suppose that ∂μ�
is time-like, that is � > 0. We then define the normalized
vector

Iμ = ∂μ�√
�
. (283)

This vector can be used to decompose the energy-
momentum tensor of a perfect fluid in the “co-moving”
representation by setting

T μν = ( + p) Iμ Iν − p qμν, (284)

it then follows

T μν ∂μ� = √
� Iμ,

and

T μν ∂μ� ∂ν� = � .

Thus, in this frame, the quantities E and T reduces to

E =  , T =  − 3p. (285)

Using these results, it follows that Cμ = 0. In the natural
frame associated to the gradient of the gravitational field �

the equation of motion for the scalar gravity, reduces to the
form

√
V �� = −κ

2

(

2α

α − 3
 − 3p

)

. (286)

This is the form of the dynamics of � when the source is a
perfect fluid. In the next section, we provide a simple exam-
ple of GSG in the analysis of the global properties of the
universe.

11 A Geometrical Description of Quantum
Mechanics Q-WIS

In the literature, there are many attempts of a quantum the-
ory formulation for the space-time from which some are
very successful, but none of them is complete. On the other
hand, the geometrical approaches for the quantum theory
have also their remarkable results. The most common is
based on a Kähler structure of a complex projective Hilbert
space, where people have tried to derive a “natural” metric
in the realm of the so-called geometric quantum mechanics
[4, 5, 7, 30, 138, 177, 178]. There are also other geometriza-
tion procedures where quantum mechanics appears as a sort
of an emergent theory [1, 74, 114–116, 142].

In this vein, one of us with collaborators have shown that
quantum mechanics (QM) can be indeed interpreted as a
modification of the Euclidean nature of three-dimensional
space into a particular Weyl affine space (called Q-WIS) by
using the de Broglie-Bohm causal formulation of QM [159].
In the Q-WIS geometry, the length of extended objects
changes from point to point, the deformation of the stan-
dard rulers used to measure physical distances are in the
core of quantum effects allowing a geometrical formula-
tion of the uncertainty principle. How is it possible? Sev-
eral works have advocated a possible connection between
non-Euclidean geometry with quantum effects [32, 41, 92,
104–108, 119, 131, 205] (see also [33–35] and references
therein) and, in this section, we briefly present one of them
in the realm of this review. The relativistic generalization in
the case of the Klein-Gordon equation was done in [72].

11.1 Weyl Geometry

In the early years of twentieth century, Weyl [202, 203] sug-
gested a modification of the Euclidean geometry that was an
extension of the proposal made by Riemann. The main moti-
vation was related to the unified program that followed the
geometrization of gravity displayed by GR. Weyl proposed
to identify the electromagnetic interaction as a modification
of the geometry of space-time along similar lines as it was
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made for gravity. For various reasons, this proposal did not
succeed. Nevertheless, the result of this research achieved
a well-defined and consistent generalization of Riemannian
geometry. In fact, a Riemannian geometry can be under-
stood as a special case of a Weyl geometry. In the first
section of this review, we have described in more details the
properties of Weyl geometry, but it is worth to mention here
its main difference that is related to the notion of a standard
ruler.

In a Weyl geometry, the length of an extended object
changes from point to point. This means that a ruler of
length l will change by an amount

δ l = l fa dxa .

This effect may become an obstacle to the notion of a local
ruler and thus to local measurement of distance [167]. How-
ever, there is a special sub-class of Weyl geometries known
as Weyl integrable space (WIS) that is free of such diffi-
culty. This is provided by the condition that the vector fi
is a gradient of a function, i.e., fa = f, a. The geometry
WIS is distinguished precisely by the fact that the length of
the ruler transported along a closed curve does not change.
Hence, if the change of the ruler’s length is dl, for a closed
path in WIS we have
∮

dl = 0 ,

which guarantees the uniqueness of any local measurement.
The allowance of an intrinsic modification of the standard
rulers is the main geometrical hypothesis that allows to asso-
ciate this geometrical modification to the origin of quantum
effects. We restrict this review only to the case of an iso-
lated point-like particle possibly subjected to an external
potential.

11.2 Quantum Mechanics

In the end of last century, the development of quantum cos-
mological scenarios brought to light some difficulties intrin-
sic to the Copenhagen interpretation [22–24, 39, 62, 82, 90,
102, 103, 113]. More specifically, the measurement pro-
cess in a quantum closed universe seems inconsistent [60,
61, 168]. Fortunately, there are some alternative interpreta-
tions that can be applied simultaneously to cosmology and
to the micro-world, for instance the Many-Worlds interpre-
tation [71, 199], the Consistent Histories formulation [96,
164] and, in particular, the so-called causal interpretation or
also Bohm-de Broglie interpretation [43–49, 133], since it
is among the well-defined interpretation that can be applied
to any kind of system, including the universe as a whole,
and up to date it is completely equivalent to the Copenhagen
interpretation when applied to the micro-world.

QM has been seen as a modification of the classical
laws of physics to incorporate the uncontrolled disturbance
caused by the macroscopic apparatus necessary to real-
ize any kind of measurement. This statement, known as
Bohr’s complementary principle, contains the main idea
of the Copenhagen interpretation of QM. The quantization
program continues with the correspondence principle pro-
moting the classical variables into operators and the Poisson
brackets into commutation relations.

In this non-relativistic scenario, the Schrödinger equation
establishes the dynamics for the wave function describing
the system. Note that as in Newtonian mechanics, time is
only a external parameter and the 3-D space is assumed to
be endowed with the Euclidean geometry.

Using the polar form for the wave function, � = AeiS/�,
the Schrödinger equation is decomposed in two equations
for the real functions A (x) and S (x)

∂S

∂t
+ 1

2m
∇S · ∇S + V − �

2

2m

∇2A

A
= 0 , (287)

∂A2

∂t
+ ∇
(

A2 ∇S

m

)

= 0 . (288)

Solving these two equations is completely analogous to
solving the Schrödinger equation. The probabilistic inter-
pretation of QM associate ‖�‖2 = A2 with the probability
distribution function on configuration space. Hence, Eq.
(288) has exactly the form of a continuity equation with
A2 ∇S/m playing the role of current density.

11.3 Short Synthesis of Bohm-de Broglie Interpretation

The causal interpretation of QM propose that the wave func-
tion does not contain all the information about the system.
An isolated system describing a free particle (or a parti-
cle subjected to a potential) is defined simultaneously by
a wave function and a point-like particle. In this case, the
wave function still satisfies the Schrödinger equation but it
should also work as a guiding wave modifying the particle
trajectory.

Note that (287) is a Hamilton-Jacobi-like equation with
an extra term that is often called quantum potential

Q ≡ − �
2

2m

∇2A

A
, (289)

while, as already mentioned, (288) is a continuity-like
equation. The Bohm-de Broglie interpretation takes these
analogies seriously and postulates an extra equation associ-
ating the velocity of the point-like particle with the gradient
of the phase of the wave function, namely,

ẋ = 1

m
∇S . (290)
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Integrating this equation yields the quantum Bohmian tra-
jectories. The unknown or hidden variables are the initial
positions necessary to fix the constant of integration of the
above equation.

The quantum potential is the sole responsible for all nov-
elties of quantum effects such as non-locality or tunneling
processes. As a matter of fact, the Bohm-de Broglie inter-
pretation has the theoretical advantage of having a well
formulated classical limit. Classical behavior is obtained as
soon as the quantum potential, which has dimensions of
energy, becomes negligible compared to other energy scales
of the system.

In what follows, we will show that it is possible to rein-
terpret QM as a manifestation of non-Euclidean structure
of the three-dimensional space, leading to a geometrical
interpretation of the quantum effects.

DM for the Q-Potential The quantum force that a particle
suffers has two important properties:

• It is universal.
• It admits a potential.

These properties are quite similar to Newtonian grav-
ity. This means that it is possible to follow a similar path
as proposed in GR and in the formulation of DM (cf. pre-
vious sections) to eliminate the Bohmian forces in terms
of a Riemannian geometry. Instead of this, we will follow
another path by a different change on the geometry of the
three-dimensional space.

Instead of imposing a priori that QM has to be con-
structed over an Euclidean background as it is traditionally
done, quantum effects can be interpreted as a manifesta-
tion of a non-Euclidean structure derived from a variational
principle. The validity of the specific geometrical structure
proposed can be checked a posteriori comparing it to the
usual non-relativistic QM.

Thus, consider a point-like particle with velocity v =
∇S/m and subjected to a potential V. Following Einstein’s
idea to derive the geometrical structure of space from a
variational principle by considering the connection as an
independent variable, we start with

I =
∫

dtd3x
√
g �2

(

λ2R − ∂S

∂t
− Hm

)

(291)

and consider the connection of the 3-D space �i
jk , the

Hamilton’s principal function S, and the scalar function �

as independent variables. Note that indices i, j, ... run from
1 to 3.

Considering the line element in Cartesian coordinates

ds2 = gijdxidxj = dx2 + dy2 + dz2,

with g = det gij , the Ricci curvature tensor is defined in
terms of the connection through

Rij = �m
mi ,j − �m

ij ,m + �l
mi�

m
jl − �l

ij�
m
lm

and its trace defines the scalar curvature R ≡ gijRij which
has dimensions of inverse length squared, [R] = L−2. The
constant λ2 has dimension of energy times length squared,
[λ2] = E L2, and the ∂S

∂t
term is related to the particle’s

energy. In the case of point-like particle, the Hamiltonian is

Hm = 1

2m
∇S · ∇S + V .

Variations of the action I with respect to �i
jk yield

gij ;k = −4 (ln�),k gij , (292)

where “;” denotes covariant derivative and “,” simple
derivative. (292) characterizes the affine properties of the
physical space. Hence, the variational principle naturally
defines a WIS; variation with respect to � gives

λ2R = ∂S

∂t
+ 1

2m
∇S · ∇S + V . (293)

The right-hand side of this equation has dimension of
energy while the curvature scalar has dimension of [R] =
L−2. Furthermore, apart from the particle’s energy, the only
extra parameter of the system is the particle’s mass m. Thus,
there is only one way to combine the unknown constant λ2,
which has dimension of [λ2] = E L2, with the particle’s
mass such as to form a physical quantity. Multiplying them,
we find a quantity that has dimension of angular momentum
squared [mλ2] = �

2.
In terms of the scalar function �, the curvature scalar is

given by

R = 8
∇2�

�
. (294)

Hence, setting λ2 = �
2/16m, Eq. (293) becomes

∂S

∂t
+ 1

2m
∇S · ∇S + V − �

2

2m

∇2�

�
= 0 , (295)

Finally, varying the Hamilton’s principal function S, we find

∂�2

∂t
+ ∇
(

�2 ∇S

m

)

= 0. (296)

Equations (295) and (296) coincide with (287) and (288)
if we identify � = A. Thus, the “action” of a point-like
particle non-minimally coupled to geometry given by

I =
∫

dtd3x
√
g �2

[

�
2

16m
R −

(

∂S

∂t
+ Hm

)]

, (297)

exactly reproduces the Schrödinger equation and thus the
quantum behavior.

The straightest way to compare this geometrical
approach to the quantum theories is through the Bohm-de
Broglie interpretation. Note that this formulation has the
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advantage of giving a physical explanation for the appear-
ance of the quantum potential (289). In Q-WIS (Q for
quantum), this term is simply the curvature scalar of the
WIS. The inverse square root of the curvature scalar defines
a typical length Lw (Weyl length) that can be used to
evaluate the strength of quantum effects

Lw ≡ 1√
Rw

.

As we have already mentioned, the classical limit of
Bohm-de Broglie interpretation is achieved when the quan-
tum potential is negligible compared to other energy scales
of the system. In the scope of this geometrical approach,
the classical behavior is recovered when the length defined
by the Weyl curvature scalar is small compared to the typ-
ical length scale of the system. Once the Weyl curvature
becomes non-negligible, the system goes into a quantum
regime.

Geometrical Uncertainty Principle As long as we accept
that QM is a manifestation of a non-Euclidean geometry, we
are faced with the need of reinterpreting geometrically all
theoretical issues related to quantum effects. As a first step,
we derive the uncertainty principle as a break down of the
classical notion of a standard ruler.

It is well known among relativistic physicists that there is
no absolute notion of spatial distance in curved spacetime.
However, this is no longer true when there is an absolute
Newtonian time and only the spatial manifold is allowed to
be curved. In this case, it is possible to define distance as the
smallest length between two given points calculated along
geodesics in 3-D space. This is a consistent definition since
the 3-D space has a true metric in the mathematical sense
that its eigenvalues are all positives. However, this definition
does not encompass the classical definition of a standard
ruler.

Hence, we are unable to perform a classical measurement
to distances smaller than the Weyl curvature length. In other
words, the size of a measurement has to be bigger than the
Weyl length

�L ≥ Lw = 1√
Rw

. (298)

The quantum regime is extreme when the Weyl curvature
term dominates. Thus, from Eqs. (294) and (295), we have

Rw = 2

(

2�p

�

)2

− 16m

�2 (E − V ) ≤ 2

(

2�p

�

)2

(299)

and finally combining Eqs. (298) and (299), we obtain

�L�p ≥ �

2
√

2
.

We should emphasize that now the Heisenberg’s uncer-
tainty relation has a pure geometrical meaning. This argu-
ment resembles Bohr’s complementary principle inasmuch
as the impossibility of applying the classical definitions of
measurements.

Bohr’s complementary principle is based on the uncon-
trolled interference of a classical apparatus of measurement.
On the other hand, the notion of a classical standard ruler
breaks down because its meaning is intrinsically dependent
on the validity of Euclidian geometry. Once it becomes nec-
essary to include the Weyl curvature, we are no longer able
to perform a classical measurement of distance.

There is another way to interpret the uncertainty princi-
ple. For a given particle of mass m and energy E, there is
only one combination with the free parameter of the the-
ory (�) that furnishes a quantity with dimensions of length.
We take this value as a definition of the classical size of the
particle, namely

lpart ≡
√

�2

Em
. (300)

Note that this definition coincides with the Compton’s
wavelength of the particle which is related to the limits of
validity of non-relativistic QM.

Considering a free stationary particle, from Eq. (293), we
have

E = �
2

16m
RW ⇒ lpart = 4√

RW

,

and from Eq. (299)

lpart �p ≥ √
2 � . (301)

From this point of view, the uncertainty principle indi-
cates that it is impossible to perform a measurement smaller
than the classical size of the particle defined by Eq. (300).
In other words, it is impossible to perform a classical
measurement inside the particle.

11.4 Additional Comments

It is well known that as soon as we consider high veloc-
ities or high energies, one has to abandon the Euclidean
geometry as a good description of the physical space. These
brought two completely different modifications where the
physical space loses its absolute and universal character.
In fact, these are the core of classical relativistic physical
theories, namely, Special relativity and GR.

In a similar way, one should be allowed to consider
that the difficulties that appears while going from classi-
cal to QM comes from an inappropriate extrapolation of the
Euclidean geometry to the micro-world. Hence, the unques-
tioned hypothesis of the validity of the 3-D Euclidean
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geometry to all length scales might be intrinsically related
to quantum effects.

We overview here the close connection between the
Bohm-de Broglie interpretation of QM and the modification
of the geometry of space by passing from Euclidean 3-D to
a 3-D Q-WIS. The Bohmian quantum potential can be iden-
tified with the curvature scalar of the Q-WIS and through a
variational principle, it is possible to reproduce the Bohmian
dynamical equations which are equivalent to Schrödinger’s
QM.

The Palatini procedure, in which the connection acts as
an independent variable while varying the action, naturally
endows the space with the appropriate Q-WIS structure.
Thus, this geometry enters into the theory less arbitrarily
than the implicit ad hoc Euclidean hypothesis of QM. The
identification of the curvature scalar as the ultimate origin
of quantum effects leads to a geometrical version of the
uncertainty principle. This geometrical description consid-
ers the uncertainty principle as a break down of the classical
notion of standard rulers. Thus, it arises an identification
of quantum effects to the length variation of the standard
rulers.

12 Comments and Conclusions

In the realm of Special Relativity, the Newtonian idea of
an absolute clock for all inertial observer is replaced by
the concept of a proper time for each observer, namely the
particular measure of the physical time is different depend-
ing on the relative motion of a given inertial observer with
respect to a rest frame. Then, due to its universality, the
gravitational interaction was interpreted as a modification
of the geometry of space-time [135]. In the electrodynam-
ics of moving dielectrics, a similar result was made possible
by Gordon’s analysis of light rays inside a material media
and its propagation was interpreted in terms of an associated
geometry.

Recently, the D’Alembert principle of Classical
Mechanics—which transforms any dynamical problem into
a statical one—was generalized by adopting as fundamental
principle that the acceleration induced by any kind of forces
is eliminated through a modification of the background
metric. We can understand this procedure as an extension of
the Special Relativity idea of relative time to the geometry
of space-time, once it follows that for each body acted upon
by arbitrary forces one can attribute a particular geome-
try such that it is interpreted as following a free-motion.
This property that allows the elimination of any force by a
change on the metric properties on the space-time is called
Metric Relativity.

The second step presented here concerns the Dynami-
cal Bridge (DB). Maxwell and Born-Infeld’s theories in the

same background correspond to different descriptions of the
electromagnetic interaction. However, we have seen that the
DB leads to an equivalence between them, that is, they have
the same dynamical properties when each one of these theo-
ries is written in a distinct space-time geometry. The crucial
point is related to the dependence on the electromagnetic
field of the associated metrics. This indicates that both the-
ories can be understood from a more fundamental point of
view depending on which aspects of electromagnetism is
to be emphasized. This general structure of maps between
explicit distinct theories allows connections which were not
considered before and the physical phenomena can thus be
comprehended more deeply. In other words, distinct theo-
ries are seen only as different languages representing the
same phenomenon. This property of the DB can be enlarged
through other processes. In particular, we can point out the
recent geometric scalar gravity (GSG), that is, a theory ini-
tially written in flat Minkowski space is interpreted as a
nonlinear theory in an associated curved space-time. Finally,
we described the geometrization of Quantum Mechanics
(QM), through the use of Weyl geometry, which structure
is the responsible for the origin of the quantum potential
needed to properly describe QM in the de Broglie-Bohm
framework.

In practice, we elaborate in this report a thorough review
on the following issues:

• From a kinematical point of view, we have shown that
it is possible to display a geometrical description of
any kind of force assuming that the space-time metric
is not unique and not given a priori. In particular, for
any accelerated vector field vμ in a background metric
gμν , it is always possible to find another metric ten-
sor ĝμν in which vμ follows a geodesic motion. As we
have seen, the procedure described in Section 5 can
be applied to any vector field lying in any space-time
metric; for instance, we selected the Schwarzschild,
Gödel, and Kerr solutions of GR equations to exemplify
the method. Furthermore, the generalization of Gor-
don’s results to arbitrary material media and nonlinear
EM theories in Section 6 can also be considered as a
consequence of it.

• In Section 9, we introduced the concept of DB and we
applied this to the most relevant cases involving scalar,
vector or spinor fields, trying to explain with some
details how the DB can provide alternative explanations
to current open problems in physics. Still in the realm of
the DB, we then present in Section 10 a recent attempt
to describe the gravitational interaction only in terms of
a scalar field.

• Finally, we summarized the geometrical formulation of
quantum mechanics according to the de Broglie-Bohm
interpretation, emphasizing that the quantum potential
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can be seen as a consequence of a possible non-
metricity of the Euclidean space. This non-metricity is
represented by a particular choice of the Weyl affine
space called Q-WIS. The main result is that the defor-
mation of the standard rulers used to measure physical
distances allows a geometrical formulation of the uncer-
tainty principle.

We conclude this review stating that the most adequate
mathematical formulation to describe the geometry of the
physical world should not be established a priori [170]; the
physical experiments indicate which space-time geometry
(or class of) is actually realized in nature and in which scale
(macrophysics or microphysics), it is relevant to develop a
measurable/testable and useful theory.
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Appendix A: Lanczos Tensor

The Weyl tensor Wαβμν can be expressed in terms of the
3-index Fierz-Lanczos potential tensor [76, 120] that we
will denote by Lαβμ. Let us summarize here some defini-
tions and properties of Lαβμ, since the literature has very
few papers on this matter. This tensor was introduced in
the 30s to provide, in a similar way as the symmetric ten-
sor ϕμν does—in a more used approach—an alternative
description of spin-2 field in Minkowski background. In the
60s, Lanczos rediscovered it—without recognizing he was
dealing with the same object—as a Lagrange multiplier in
order to obtain the Bianchi identities in the context of GR.
However, a complete analysis of Fierz-Lanczos object was
undertaken and it was discovered that its generic (Fierz) ver-
sion describes not only one but two spin-2 fields [156, 157].
The restriction to just a single spin-2 field is usually called
the Lanczos tensor. We will limit all our considerations here
to this restricted quantity.

Basic Properties In any four-dimensional Riemannian
geometry, there is a 3-index tensor Lαβμ which has the two
following symmetries:

Lαβμ+Lβαμ = 0, and Lαβμ+Lβμα+Lμαβ = 0 (302)

and with such Lαβμ we write the Weyl tensor in the form of
a homogeneous expression that is

Wαβμν = Lαβ[μ;ν] + Lμν[α;β] + 1
2 [L(αν)gβμ + L(βμ)gαν

−L(αμ)gβν − L(βν)gαμ] + 2
3 L

σλ
σ ;λ gαβμν,

where Lαμ ≡ Lα
σ
μ;σ − Lα;μ and Lα ≡ Lα

σ
σ .

Let us point out that due to the above symmetry proper-
ties, Lanczos tensor has 20 degrees of freedom. Since Weyl
tensor has only ten independent components, it follows that
there is a gauge symmetry involved. This gauge symmetry
can be separated into two classes:

�(1)Lαβμ = Mα gβμ − Mβ gαμ,

�(2)Lαβμ = Wαβ;μ − 1

2
Wμα;β + 1

2
Wμβ;α

+1

2
gμα Wβ

λ
;λ − 1

2
gμβ Wα

λ;λ, (303)

in which the vector Mα and the antisymmetric tensor Wαβ

are arbitrary quantities. Then, we can associate Lanczos ten-
sor to the parameters of a congruence of curve for different
geometries. This can be more clearly seen by stating cer-
tain Lemmas [161] that we exhibit here without proofs. The
interested reader can find them in the quoted article.

Lemma 7 If in a given Riemannian geometry there is a con-
gruence of observers vμ that is shear-free and irrotational,
then the magnetic part of Weyl tensor vanishes for these
observers.

Lemma 8 If in a given Riemannian geometry there is a con-
gruence of observers vμ that is shear-free and irrotational,
then the Lanczos potential is given by (up to gauges)

Lαβμ = aα vβ vμ − aβ vα vμ

Lemma 9 If in a given Riemannian geometry there is a con-
gruence of observers vμ that is geodesic and irrotational,
and such that Hμν vanishes, then the Lanczos potential is
given by (up to gauges)

Lαβμ = σμα vβ − σμβ vα.

An example is provided by Kasner metric

ds2 = dt2 − t2p1 dx2 − t2p2 dy2 − t2p3 dz2,

where p1 + p2 + p3 = p2
1 + p2

2 + p2
3 = 1. Consider the

velocity field vμ = δ
μ
0 , which is irrotational but has a non-

null shear and the Lanczos potential is

L0ij = (pi − 1/3)

3
t2pi−1 δij .

Note that there is no sum on the 3-D indices.

Lemma 10 If in a given Riemannian geometry there is a
congruence of observers vμ that is geodesic, non-expanding
and shear-free and such that the vorticity vector is constant
then the Lanczos potential is given by

Lαβμ = ωαβ vμ + 1

2
ωαμ vβ − 1

2
ωβμ vα.
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An example is provided by Gödel geometry which can be
written as

ds2 = dt2 − dx2 + 2 eax dt dy + e2ax

2
dy2 − dz2,

where a is a constant. Set the velocity field as vμ = δ
μ
0 , to

obtain for the vorticity 2ω12 = −a e2ax . It is straightforward
to show that this vector has no shear and the vorticity is
such that ωμ ;ν = 0. The Lanczos potential is given by the
formula expressed in this Lemma.

Appendix B: Fluid Description
of the Electromagnetic Field: the Dirac Gauge

Some years ago, Dirac [63] suggested to choose a specific
gauge such that the potential Aμ may be identified to the
normalized velocity vμ of a fluid. This means to set

Aμ Aν η
μν = 1.

We are interested here in the description of the energy-
momentum distribution that one obtains when using such
Dirac choice for the gauge. Using the identification of the
electromagnetic potential as the four-velocity of a fluid we
set for the electromagnetic tensor Fμν = Aμ,ν − Aν ,μ =
vμ ,ν −vν ,μ. From the standard decomposition of the veloc-
ity of a congruence of curves, we decompose the derivative
of the velocity field in terms of its irreducible components
(see the first section). We set

vμ ,ν = !

3
hμν + σμν + ωμν + aμ vν.

Thus, it follows that the electromagnetic field, in the Dirac
gauge, assumes the form

Fμν = 2ωμν + aμ vν − aν vμ,

where the acceleration aμ and the vorticity tensor ωμν are
defined in the first section in the standard way using the
velocity field as the potential vector Aμ.

The electric Eμ and the magnetic Hμ vectors are defined
as usual

Eμ = Fμν v
ν

Hμ = F ∗
μν v

ν.

In the Dirac gauge and under the identification of Aμ with
the velocity of the fluid, it follows that the electric vector is
given by the acceleration aμ and the magnetic field is the
vorticity ωμ, that is Eμ = aμ and Hμ = − 2wμ, where
the vorticity vector wμ is related to the tensor ωμν by the
formula

wμ = 1

2
ηαβρμ ωαβ vρ.

The energy-momentum tensor

T μν = Fμ
α F

αν + F

4
ημν,

where F ≡ Fμν F
μν, decomposed in its irreducible com-

ponents yields respectively: the density of energy ρ =
− 1

2 (aμ a
μ + 4ωμ ωμ); the pressure p = 1

3 ρ; the heat flux
(Poynting vector) qλ = ηλ

μρσ aμ v
σ ωρ and the anisotropic

pressure

πμν = − aμ aν + 1

3
aτ a

τ hμν − 4ωμ ων + 4

3
ωλ ω

λ hμν.

We note that the shear σμν and the expansion coefficient θ
are absent from these formulas, only the acceleration and
the vorticity appear.

Once in the Dirac gauge, the electric field is identified to
the acceleration in this fluid description, from what we have
learned in the previous sections it follows that it is possible
to introduce an auxiliary DM to annihilate the acceleration,
that is, to eliminate the electric field. Let us restrict the anal-
ysis here to the case the electric field is a gradient. We set
Eμ = ∂μ� and once the acceleration is orthogonal to the
velocity aμ v

μ = Eμ A
μ = 0, following the Lemma 1,

the condition that the path vμ be a geodesics in a DM is
provided by the standard condition

1 + b = exp(−2�). (304)

The generalization for an arbitrary electric field goes along
the same lines.

Appendix C: Fluid Description
of Heisenberg-Nambu-Jona-Lasinio Field

From the standard definition of the energy-momentum ten-
sor, we obtain the expression of the Heisenberg dynamics in
the fundamental solution as

Tμν = − a1 Jμ Jν − b1 Iμ Iν − s J 2 ημν.

Let us define the four-velocity field as the normalized cur-
rent vμ = Jμ/

√
J 2 and let us use this velocity field to

decompose the energy-momentum tensor in its irreducible
parts and set

Tμν = ρvμvν − phμν + qμ( vν) + πμν (305)

to obtain that there is no heat flux, that is qμ vanishes
identically and the remaining quantities are given by

ρ = − (a1 + s) J 2, and p = λ J 2

where λ = (s − a1) J
2/3 and

πμν = b1

3
(Jμ Jν − 3 Iμ Iν − J 2 ημν)
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Before taking into account the conservation laws, let
us examine the consequences of the choice for the veloc-
ity fluid in terms of its irreducible quantities. From the
definition of vμ in terms of the current, it follows

vα ,β = 2 a0
Iα Iβ√
J 2

(306)

where the comma represents partial derivative. It is straight-
forward to prove that vμ has no acceleration. Therefore,
although the field has a self-interaction term, the fluid does
not acquires a self-acceleration. Using the expression of the
current, the shear in this case is

σμν = − 2 a0

3
√
J 2

(

Jμ Jν − 3 Iμ Iν − J 2 ημν

)

.

It then follows that the anisotropic pressure and the shear
are proportional: πμν = ξ σμν , where ξ = −b1

√
J 2/2a0.

From the equation of evolution of the current, we get ξ̇ =
− b1 J

2. In the case parameters a and b are such that b1 +
3 a1 = 0, then the fluid behaves as an anisotropic vacuum,
with ρ + p = 0 and πμν = ξ σμν .

Appendix D: Fluid Description of the Scalar Field

For an arbitrary nonlinear dynamics driven by a Lagrangian
L that depends on the invariant W ≡ ∂μϕ ∂

μϕ, the energy-
momentum tensor is always given by

Tμν = −Lgμν + 2Lw ∂μϕ ∂νϕ , (307)

where Lw ≡ ∂L/∂W. In the comoving frame to the gradient
of the field, defined by the normalized vector

vμ ≡ ∂μϕ√
W

the energy-momentum tensor (307) become equivalent to a
perfect fluid, since the heat flux qα and the anisotropic pres-
sure πμν vanish identically. In this case, the non identically
zero quantities are only the energy density and pressure,
given by:

ρ = −L + 2LwW , p = L . (308)

Moreover, since both p and ρ are given as functions of W
only, we can write p = p (ρ). This shows that the dynamics
given by any purely kinetic Lagrangian is equivalent to a
perfect fluid with a specific equation of state that depends
on the dynamics of the field.
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(Wiley, France, 1977)
40. S. Corley, T. Jacobson, Phys. Rev. D 59, 124011 (1999)
41. N. Cufaro-Petroni, C. Dewdney, P. Holland, T. Kyprianidis, J.P.

Vigier, Phys. Lett. A 106, 368 (1984)
42. A. Czarneck, W.J. Marciano, Phys. Rev. D 64, 013014 (2001)
43. L. De Broglie, C.R. Acad. Sci. Paris 183, 24 (1926a)
44. L. De Broglie, C.R. Acad. Sci. Paris 183, 447 (1926b)
45. L. De Broglie, C.R. Acad. Sci. Paris 184, 273 (1927a)

http://arXiv.org/abs/0406004v2
http://arXiv.org/abs/0705.3921


804 Braz J Phys (2015) 45:756–805

46. L. De Broglie, C.R. Acad. Sci. Paris 185, 380 (1927b)
47. L. De Broglie, Nature 118, 441 (1926)
48. L. De Broglie, J. de Phys. 8, 225 (1927)
49. L. De Broglie, Non-Linear Wave Mechanics: A Causal Interpre-

tation (Elsevier, Amsterdam, 1960)
50. F. De Felice, Gen. Rel. Grav. 2, 347 (1971)
51. V.A. De Lorenci, Rev, Phys. E 65, 026612 (2002)
52. V.A. De Lorenci, R. Klippert, Phys. Rev. D 65, 064027 (2002)
53. V.A. De Lorenci, R. Klippert, Braz. J. Phys. 34, 1367 (2004)
54. V.A. De Lorenci, R. Klippert, Phys. Lett. A 357, 61 (2006)
55. V.A. De Lorenci, R. Klippert, M. Novello, J.M. Salim, Phys. Lett.

B 482, 134 (2000)
56. V.A. De Lorenci, R. Klippert, Yu.N. Obukhov, Phys. Rev. D 68,

061508R (2003)
57. V.A. De Lorenci, R. Klippert, D.H. Teodoro, Phys. Rev. D 70,

124035 (2004)
58. V.A. De Lorenci, M.A. Souza, Phys. Lett. B 512, 417 (2001)
59. S. Deser, Class. Quantum Grav. 4, L99 (1987)
60. B.S. DeWitt, Physics Today 23, 30 (1970)
61. B.S. DeWitt, N. Graham, The Many-Worlds Interpretation of

Quantum Mechanics (Princeton University Press, UK, 1973)
62. P.A.M. Dirac, The Principles of Quantum Mechanics (Oxford

University Press, UK, 1958)
63. P.A.M. Dirac, Proc. Roy. Soc. London A 333, 403 (1973)
64. W. Dittrich, H. Gies, Phys. Rev. D 58, 025004 (1998a)
65. W. Dittrich, H. Gies, Phys. Lett. B 431, 420 (1998b)
66. M. Drewes, Int. J. Mod. Phys. E 22, 1330019 (2013)
67. I.T. Drummond, S.J. Hathrell, Phys. Rev. D 22, 343 (1980)
68. A.S. Eddington, The Mathematical Theory of Relativity (Cam-

bridge University Press, New York, 1988)
69. A. Einstein, The Meaning of Relativity (Princeton University

Press, Princeton, NJ, 1950)
70. E. Elbaz, Quantum: The Quantum Theory of Particles, Fields,

and Cosmology (Springer, Berlin, 1998)
71. H. Everett, Rev. Mod. Phys. 29, 454 (1957)
72. F.T. Falciano, M. Novello, J.M. Salim, Found. Phys. 40, 1885

(2010)
73. P.O. Fedichev, U.R. Fischer, Phys. Rev. Lett. 91, 240407 (2003)
74. I. Feynès, Z. Phys. 132, 81 (1952)
75. R.P. Feynman, F.B. Morinigo, W.G. Wagner, Feynman Lectures

on Gravitation (Addison Wesley Pub Company, Massachusetts,
1995)

76. M. Fierz, Helv. Phys. Acta 12, 379 (1939)
77. F. Finelli, R. Branderberger, Phys. Rev. D 65, 103522 (2002)
78. J.B. Formiga, arXiv:1210.0759 [hep-th]
79. W.I. Fushchych, R.Z. Zhdanov, Phys. Rep. 172(4), 123 (1989)
80. L.J. Garay, J.R. Anglin, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 85,

4643 (2000)
81. L.J. Garay, J.R. Anglin, J.I. Cirac, P. Zoller, Phys. Rev. A 63,

023611 (2001)
82. M. Gell-Mann, J.B. Harle, Complexity, Entropy the Physics of

Information, ed. by W. Zurek (Addison Wesley, 1990)
83. C.Q. Geng, R. Takahashi, Phys. Lett. B 710, 324 (2012)
84. G. Gibbons, C. Will, Studies in history and philosophy of modern

physics 39, 41 (2008)
85. D. Giulini, Studies in history and philosophy of modern physics

39, 154 (2008)
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