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Institute of Cosmology, Relativity and Astrophysics (ICRA/CBPF), Rua Dr. Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro, Brazil
(Received 9 December 2011; published 25 January 2012)

We show that a generalized Born-Infeld electrodynamics responsible for regular configurations of the

static field of a charged particle produces a nonsingular universe that contains a bouncing. This means that

the Universe has a previous collapsing phase, attains a minimum value for its scale factor and then enters

into an expanding phase. We exhibit such a scenario in the case of an average pure magnetic universe. At

its infinity past as well as at its infinite future the distribution of the energy content of the magnetic fluid

displays the form of a cosmological constant. Thus such a configuration is an intermediary between

asymptotic vacuum states. In other words, this magnetic universe evolves from vacuum to vacuum.

DOI: 10.1103/PhysRevD.85.023528 PACS numbers: 98.80.Cq

I. INTRODUCTION

In their original seminal paper in 1934, Born and Infeld
[1] argued that Maxwell linear electrodynamics must be
changed in order to give origin to a well-behaved classical
field theory that does not violate ‘‘. . . the principle of
finiteness which postulates that a satisfactory theory should
avoid letting physical quantities become infinite.’’ In their
analysis, emphasis was given to the static electric field with
spherical symmetry corresponding to a charged body gen-
erating a regular electric field configuration, showing no
singular behavior. In other words, the field has an absolute
maximum.

Their analysis was limited to the electromagnetic ef-
fects. The other long-range field gravity was not involved
in their work. The reason is simple to understand: the
extreme weakness of gravitational coupling makes
unnecessary in most cases the introduction of processes
depending on gravity. However, there is one important
configuration in which gravity cannot be forgotten, and
this is cosmology. If we introduce gravitational effects
controlled by the theory of general relativity, a drawback
of Born-Infeld proposal appears: as in the case of the linear
Maxwell theory, there is no place for a regular cosmologi-
cal scenario for the combined effects of gravity and elec-
trodynamics. Such a disadvantage remained throughout all
of these years. It is true that in the last decade there has
been an increase in the interest of cosmological effects
induced by nonlinear electrodynamics (NLED) [2,3]. The
main reason for this is related to the drastic modification
that NLED provokes in the behavior of the cosmological
geometry with respect to two of the most important ques-
tions of standard cosmology, that is, the initial singularity
and the acceleration of the scale factor. However, these
proposals have not tackled the combined property of such a
regular cosmological framework with the finiteness of the
field in the vicinity of a charged particle. The purpose of
the present work is to provide a theory in which it is

possible to achieve regular behavior of the electromagnetic
field in both situations, that is, in the neighborhood of a
charged particle and in the cosmological framework.

A. Magnetic universe

Modern cosmology states that the Universe is spatially
homogeneous and isotropic and contains mainly photons,
matter concentrated in compact structures (usually taken as
a simple perfect fluid configuration) and some extra form
of energy that still is not known. From these ingredients
cosmological models have been produced that exhibits a
singular behavior.
To circumvent this unpleasant cosmological origin many

modifications of the equations of Einstein theory have been
proposed. However, it is very possible that the kernel of the
difficulty does not belong to the gravity description but
instead concerns the other long-range field, as we will
show. Indeed, in the present paper gravity will be described
by general relativity and electrodynamics by a nonlinear
theory that contains some advantages over the Maxwell
linear form in the regime of a very strong field along the
same lines as the Born-Infeld proposal [4] and that will
become explicit in the present work.
The general form for the dynamics of the electromag-

netic field, compatible with covariance and gauge conser-
vation principles [5] reduces to L ¼ LðFÞ, where
F � F��F��. Once the main novelty of our modification

of Born-Infeld electrodynamics concerns cosmology, let us
anticipate here some of these new properties.
The arguments presented in [6] make it worth consider-

ing that only the averaged magnetic field survives in a
spatially homogeneous and isotropic geometry. Such con-
figuration of pure averaged magnetic field combined with
the dynamic equations of general relativity received the
generic name of the magnetic universe [7]. The most
remarkable property of a magnetic universe configuration
is the fact that from the energy conservation law it follows
that the dependence on time of the averaged magnetic field
BðtÞ is the same irrespective of the specific form of the*ICRANet Cesare Lattes Professor
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Lagrangian. This property allows us to obtain the depen-
dence of the magnetic field on the scale factor aðtÞ, without
knowing the particular form of the Lagrangian LðFÞ.
Indeed, as we will show later on, from the energy-
momentum conservation law it follows that B ¼ B0a

�2.
It is a well-known fact that the standard cosmological

model unavoidably leads to a singular behavior of the

curvature invariants in what has been termed the big
bang. This is a highly distressing state of affairs, because
in the presence of a singularity we are obliged to abandon

the rational description of Nature. It is possible that a
complete quantum cosmology could describe the state of
affairs in a very different and more complete way. For the

time being, while such complete quantum theory is not yet
known, one should attempt to explore alternatives that are
allowed and that provide some sort of phenomenological

consequences of a more profound theory. The combined
effects of Maxwell linear electrodynamics with the equa-

tions of general relativity in a spatially homogeneous and
isotropic metric implies the unavoidable and disturbing
presence of a singularity. Such an undesirable property

remains if the nonlinear effects induced by the Born-
Infeld theory are taken into account. It is precisely to
extend the regular character introduced in their formulation

of an electric field of a charged body into the cosmological
scenario that led us to propose the present modified version
of Born-Infeld theory.

Scenarios that avoid an initial singularity have been
intensely studied over the years (see Novello-Santiago
[8] for a complete review). In the present article we limit
ourselves to the simplest model generated by the coupling
of gravity and an electromagnetic field. Thus, we present a
cosmological scenario controlled by the energy density �
and the pressure p of an average magnetic field (see the
next section for the meaning of this average). The main
features of this scenario can thus be synthesized by the
following few steps:

(i) The Universe is dominated by an average magnetic
field;

(ii) At the infinite past the energy distribution represent-
ing the asymptotic regime of the magnetic field is
equivalent to a cosmological constant;

(iii) This initial configuration is not stable: the Universe
collapses;

(iv) The Universe stops its contraction when arriving at
the minimum value of the scale factor amin ¼ ab;

(v) In this state the density of energy has a minimum;
(vi) Then it starts a phase of expansion: the volume

starts to increase and continue being always
accelerated;

(vii) This universe ends in a similar configuration for
the magnetic fluid as it was at its beginning, that is
identical to a perfect fluid with the equation of
state of the vacuum %þ p ¼ 0, and the volume
goes to infinity.

There are some interesting features in this scenario. Let
us anticipate two of them relating to the property that near
the bouncing, in the collapsing phase there appears an
unusual behavior of the fluid: although the volume is
diminishing (in the collapsing phase) the density of energy
% decreases. After passing the minimum value for the scale
factor, % starts to increase although the volume is increas-
ing. This behavior is due to the high negative value of the
pressure. After passing the point in which the density of
energy has a maximum, the behavior of % changes and
become the expected one, that is, increasing of the volume
is accompanied with a diminishing of the density %.
Such behavior occurs also in other scenarios (see, for
instance [9]).
This scenario is akin to the idea of Lemaı̂tre primordial

‘‘atom.’’ However, contrary to his suggestion, in the
present model at its initial stage the Universe is very big.
This primordial configuration is not stable and cannot
remain as such: it starts to collapse due to the negative
pressure. We shall prove that this collapses stops at a
certain point and the universe starts to expand, avoiding
the undesirable passage through a singularity contained in
Friedmann models. Thus, this scenario describes what
happened in the neighborhood of the maximum condensate
point: a bounce.
The article is organized as follows. In Sec. II we describe

our theory of nonlinear electrodynamics and compare its
properties with the Maxwell linear model and Born-Infeld.
Section III provides a short review of the nonlinearity of the
theory that allows its description in terms of the field inside
matter defining the effective dielectric and susceptibility
parameter in terms of functions of the field that depends
on its Lagrangian. In Sec. IV we review the Tolman process
of average in order to reconcile the energy distribution of
the electromagnetic field with a spatially isotropic geome-
try. Section V presents the notion of the magnetic universe
and its generic features concerning the dynamics of elec-
tromagnetic field generated by a Lagrangian L ¼ LðFÞ.
Sections VI and VII deal with the geometrical and dynami-
cal properties of our model and a comparison with the
previous results of the linear theory and Born-Infeld pro-
posal. We end with some conclusions and future perspec-
tives. In Appendix A we present the compatibility of our
Lagrangian with the standard Coulomb law.
Finally, let us note that we limited our considerations

here to the case of magnetic field neglecting the matter and
energy of other forms. This was made in order to simplify
our scenario and its analysis and to make clear the main
properties of our new theory. We made only a few com-
ments concerning the modification in the dynamics of the
cosmological metric when incoherent matter (no pressure)
is taken into account, leaving the complete analysis of the
effects introduced by other forms of matter/energy for a
more extended (and more realistic) version to a subsequent
paper.
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II. THE THEORY

The method proposed by Born and Infeld to limit the
maximum possible value of the electric field is already
contained in the action principle that drives its dynamics.
This is achieved by setting the form of the Lagrangian as

L ¼ ��2U�; (1)

where

U � 1þ �F

and � � ð2nþ 1Þ=2, n is any natural number.
Their analysis was made only for the case n ¼ 0, and we

will restrict our investigation here only to their choice. In
order that this theory reduces to the linear Maxwell limit
for very small fields (comparing with �2) they set

� ¼ 1

2�2
:

This dynamics was constructed under the hypothesis that
there must exists a maximum possible value of the electric
field and that the theory must contain explicitly such a
constraint. Nothing similar is demanded for the magnetic
sector. For the situations dealing with charged bodies, this
restriction is sufficient to avoid divergencies. However, in
the cosmological framework, as in the case of magnetic
universe that we analyze here, this is not enough as we will
show in the next section. This led us to generalize the Born-
Infeld dynamics in such a way that the new theory allows
for an absolute maximum for the field in any circumstance,
or in other words, to limit the invariant F ¼ �2E2 þ 2B2

to the bounds X� < F < Xþ. To achieve this condition
we set the Lagrangian (a scalar version of such extended
Born-Infeld type of theory was presented in [4])

L ¼ ��2W1=2; (2)

where

W ¼ 1þ �F� �2F2: (3)

The Born-Infeld theory is the particular case in which
� ¼ 0. In order that this theory reduces to the linear
Maxwell limit for very small fields (comparing with �2)
we set

� ¼ 1

2�2
: (4)

Note that the next term of the series yields the quadratic
Euler-Heisenberg correction. From the form of this
Lagrangian it follows that the field has two extremum
provided by the values X� and Xþ that limit the electric
and the magnetic fields:

X� ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16�2�4

p
4�2�2

and

Xþ ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16�2�4

p
4�2�2

:

III. NONLINEAR THEORYAS A PLASMA

It has been pointed out [10] that nonlinear electrody-
namics is a useful tool to present in an equivalent formal
way the effects of charged bodies in a plasma configura-
tion. Let us present very briefly an overview of such a
concept. We start by noting that the equation of motion of a
theory described by a Lagrangian LðFÞ is given by

ðLFF
��Þ;� ¼ 0; (5)

where LF ¼ dL=dF. This expression can be rewritten
in a form that is worth analyzing in the cosmological
framework, that is,

F
��
;� ¼ J�; (6)

where

J� ¼ �LFF

LF

F��F;�:

Using our Lagrangian (2) it follows that

LFF

LF

¼ � 1

4�2W

ð1þ 16�2�4Þ
ð1� 4�2�2FÞ :

In the case of a spatially homogeneous universe F is
function only of the cosmological time. This means that
the current reduces to the form

J� ¼ �E�:

In the asymptotic limit where the field is very weak (we
shall see that in the case of a spatially homogeneous and
isotropic geometry such situation occurs at the infinite
past) � is a constant which in our theory is given by

� � 1þ 16�2�4

4�2
:

Using this result into Eq. (6) it follows that the nonlineari-
ties mimic a plasma even in the case in which there are no
currents at all. The effective current described by �E�

drives the field as if there was a real plasma. We shall
use this result into the Tolman average procedure in the
next section.

IV. THE AVERAGE PROCEDURE AND THE
FLUID REPRESENTATION

The effects of a nonlinear electromagnetic theory in a
cosmological setting have been studied in several articles
[11]. In the standard cosmological scenario the metric
structure of space-time is provided by the Friedmann-
Lemaı̂tre (FL) geometry. For compatibility with the
cosmological framework, that is, in order that an electro-
magnetic field can generates a homogeneous and isotropic
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geometry an average procedure must be used. There are
distinct ways to define such an average. For the purpose
of the present paper it is enough to suppose that for the
electromagnetic field to act as a source for the FL
model [12]

�E i ¼ 0; �Bi ¼ 0; EiBj ¼ 0; (7)

EiEj ¼ �1
3E

2gij; BiBj ¼ �1
3B

2gij; (8)

where the symbol �X means such an average value [13].
With these conditions, the energy-momentum tensor of

the electromagnetic field associated to L ¼ LðFÞ can be
written as that of a perfect fluid. Indeed, for a generic
gauge-independent Lagrangian L ¼ LðFÞ, written in terms
of the invariant F � F��F

��, it follows that the associated

energy-momentum tensor, defined by

T�� ¼ 2ffiffiffiffiffiffiffi�g
p �L

ffiffiffiffiffiffiffi�g
p

�g�� ; (9)

reduces to

T�� ¼ �4LFF�
�F�� � Lg��: (10)

Then,

T�� ¼ ð�þ pÞv�v� � pg��; (11)

where

� ¼ �L� 4LFE
2; p ¼ L� 4

3ð2B2 � E2ÞLF: (12)

V. MAGNETIC UNIVERSE

A particularly interesting case occurs when only the
average of the magnetic part does not vanishes and we
can set E2 ¼ 0. Such situation has been investigated in the
cosmological framework yielding what has been called
the magnetic universe. In the previous section we analyzed
this and argued that it is a real possibility in the case of
cosmology, since in the spatially homogeneous universe
the nonlinearities can be interpreted in terms of a current
that allows the electric field to become screened like in a
charged plasma, while the magnetic field lines are frozen
[6]. A remarkable feature of the magnetic universe comes
from the fact that it can be associated to a perfect fluid. In
spite of this fact, in [3] some attention was devoted to the
mathematically interesting case in which E2 ¼ �2B2 � 0.
We work with the standard form of the FL geometry in
Gaussian coordinates provided by

ds2 ¼ dt2 � aðtÞ2d�2: (13)

We restrict our analysis to the case in which the
curvature of the space sector is positive. The expansion
factor 	 defined as the divergence of the fluid velocity
reduces, in the present case, to the derivative of logarithm
of the scale factor

	 � v
�
;� ¼ 3

_a

a
: (14)

The conservation of the energy-momentum tensor pro-
jected in the direction of the comoving velocity v� ¼ ��

0

yields

_�þ ð�þ pÞ	 ¼ 0: (15)

Substituting the values of the density of energy and
pressure from the expressions above into the conservation
law, it follows that

LF

�
ðB2Þ_þ 4B2 _a

a

�
¼ 0: (16)

The important result that follows from this equation is
that the dependence on the specific form of the Lagrangian
appears as a multiplicative factor. This property shows that
any Lagrangian LðFÞ yields the same dependence of the
field on the scale factor irrespective of the particular form
of the Lagrangian. Indeed, Eq. (16) yields

B ¼ B0a
�2: (17)

This property implies, for instance, that if we develop the
Lagrangian in a power series, it follows that for each power
Fk it is possible to associate a specific fluid configuration
with density of energy �k and pressure pk in such a way
that the corresponding equation of state is given by

pk ¼
�
4k

3
� 1

�
�k: (18)

Using Lagrangian L given by (2) in the case of the
magnetic universe yields for the density of energy and
pressure given in Eq. (12):

� ¼ �2W1=2 (19)

p ¼ ��2W�1=2

3
½3W � 2ð�F� 2�2F2Þ�; (20)

where

F ¼ 2
B2
0

a4
: (21)

It is convenient to rewrite the pressure in terms of the
density. We find

p ¼ �%þ �2Fð1� 4�2�2FÞ
3%

(22)

from which it follows that there exists a special value of the
field that we will call Fc such that for values of the field
greater than Fc then %þ p is negative and for values of
F < Fc then %þ p is positive.
Let us now turn to the analysis of the equations of

general relativity which, due to the symmetry imposed
on the metric structure reduces to three: a constraint
given by
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%� 3

a2
¼ 	2

3
(23)

and two dynamics that we examine next.

VI. DYNAMICAL SYSTEM

Besides the conservation of the energy density we must
examine the evolution of the scale factor which is con-
trolled by the Raychaudhuri equation of the expansion
	 � 3 _a=a, that is,

_	þ 	2

3
¼ � 1

2
ð%þ 3pÞ: (24)

It is worth rewriting the system of equations of the
magnetic universe in terms of an autonomous planar
system. Instead of using variables ð%; 	Þ it is convenient
to use ðF; 	Þ. We then write

_F ¼ �4
3F	 (25)

_	 ¼ �	2

3
þ �2

ffiffiffiffiffi
W

p � Fð1� 4�2�2FÞ
2

ffiffiffiffiffi
W

p : (26)

As we can see in Fig. 1, this system admits only two
critical points ðF0; 	0Þ, that is,

(i) Point A: ð0;� ffiffiffiffiffiffiffiffi
3�2

p Þ
(ii) Point B: ð0;þ ffiffiffiffiffiffiffiffi

3�2
p Þ

The value F ¼ 0 is attained when the scale factor go to
infinity, once F ¼ 2B2

0=a
2 that is for % ¼ �2 which corre-

sponds to the infinite past and to the infinite future [see
Eq. (23)]. Looking at the plot in the phase space one finds
the expected result that at t ! �1 the system is unstable
and at t ! þ1 it is stable. Thus, the set of all integral
trajectories of the solutions of our dynamical system has
the same behavior: it starts at the infinite past with a very

large volume collapses pass a minimum where 	 vanishes
and then start to increase.

A. Domain of F

In the case of a magnetic configuration of the Born-
Infeld theory the quantity U ¼ 1þ F=2�2 may attain
any value. This means that the field F ¼ 2B2 can take
arbitrary large values. On the other hand, in the extended
theory presented here the corresponding quantity W ¼
1þ F=2�2 � �2F2 restricts the domain of the magnetic
field in the range (Fig. 2)

0<F <
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16�2�4
p
4�2�2

:

As a consequence of this the density of energy is also
restrained. Indeed the energy can assume values only in the
domain

1<
%

�2
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

16�2�4

s
:

Let us note that a very small value of� is crucial in order
that the density of energy may attain values that are far
from the minimum �2 (Fig. 4).

B. Special values of the field

There are some special values of F that identify some
important properties concerning not only the magnetic
field itself but the values of the scale factor. Let us describe
some of them here concerning three important values F
that we will name Fc, Fn, and Fb. They are defined,
respectively, by the properties:
(i) Fc is the value in which the density of energy attains

an extremum and consequently—using Eq. (15)—at

FIG. 1. Space of phase (	� F).
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FIG. 2. Time evolution of the field F. It is inversely propor-
tional to the scale factor. Note that it has a maximum precisely at
the bounce.
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this point the energy density and the pressure takes
the values such that %þ p ¼ 0;

(ii) Fn is the value in which the quantity W pass the
value 1 for the first time (it will end at this same
value 1 in the asymptotic regime F ¼ 0);

(iii) Fb is the value at the bouncing, where 	 vanishes.
See Eq. (15).

The values of these quantities are given by

Fc ¼ 1

4�2�2
; (27)

Fn ¼ 1

2�2�2
; (28)

and Fb satisfies the equation of general relativity

%� 3

a2
¼ 	2

3
;

that is, in our case, setting Z ¼ Fb

�2�4Z2 þ qZ� �4 ¼ 0; (29)

where we have defined

q � 9� B2
0�

2

2B2
0

:

From these expressions it follows that the order of these
quantities is given by Fc < Fn < Fb for arbitrary values of
the constant B0.

Note that once the scale factor has a minimum at Fb the
domain of the values of the field that belong to the region

Fb < F < Xþ

is forbidden.

C. Behavior of the scale factor: Bouncing configuration

When F is bounded from zero to its maximum value Fb

the scale factor varies in the domain

ab < aðtÞ<1;

where

a4b ¼
2B2

0

Z

with

Z ¼ 1

4�2�2
ðMþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 16�2�4

q
Þ

and

M � 1� 9

B2
0�

2
:

We recognize from this expression that it is the presence
of � the responsible for the existence of a minimum of the

scale factor. In the case of Born-Infeld theory, that is, for
� ¼ 0, the scale factor attains the value zero, implying the
existence of a singularity of the cosmological metric.
The requirement for the existence of a minimum of aðtÞ

is equivalent to the inequality Fb > Fc which imposes a
condition on the minimum possible value of the intensity
of the field given by

B2
0 >B2

cr;

where

B2
cr ¼ 18

�2ð1þ 16�2�4Þ :

In other words, if the value of the field is lower than such
critical value Bcr there is no minimum: a singularity be-
comes inevitable [Fig. 3].

D. Behavior of the energy and the pressure

The expression of the energy density is given by

� ¼ �2

�
1þ B2

0

�2a4
� 4�2B4

0

a8

�
1=2

: (30)

Using the conservation equation (15) it follows that
there exists three extremum for the density: two maxima
at the value F ¼ Fc and at the bouncing. We have already
noted that the behavior is apparently counterintuitive, once
at the bouncing the energy density has a minimum and the
others two points are maximum. At the past infinity and at
the future infinity when the scale factor increases without
limit, the density goes to a constant, that is,

0 � % < �2:

We note that the pressure is always negative (Fig. 5).
The quantity that controls the time evolution of the density,
in the expanding Universe, is %þ p. This quantity changes
the sign during the evolution at the points t ¼ tc.

-400 -300 -200 -100 0 100 200 300 400
0

100

200

300

400

500

time (t)

Scale
factor

FIG. 3. Graphic of scale factor with time, obtained by a series
of iterations starting from the minimum ab.
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VII. THE INEVITABILITY OF THE PRESENCE OF
THE COSMOLOGICAL CONSTANT IN THE

GENERALIZED BORN-INFELD
ELECTRODYNAMICS

In their paper Born and Infeld consider the Lagrangian
as given by

L ¼ ��2
ffiffiffiffi
U

p þ �2; (31)

where U ¼ 1þ F=2�2. The extra term �2 was not impor-
tant for the electrodynamics and it was added only to set
the energy content of the field to go asymptotically to zero.
In other words, to eliminate the possibility that the energy-
momentum tensor of the electromagnetic field reduces to a
cosmological constant. One should wonder if a similar
procedure could be made in the context of our general-
ization when the factor U is changed for W given by

W ¼ 1þ F=2�2 � �2F2:

The answer is a definite no. Let us explain this.
Let us start by supposing that to our Lagrangian a similar

extra term is added. This means that the density of energy
in this hypothetical case assumes the expression

~% ¼ �2
ffiffiffiffiffi
W

p � �2:

The question then appears: is such expression positive
definite? In the case of Born-Infeld the answer is yes, but
this is not the case in our generalized electrodynamics.
To show this let us consider three important values of the

field F that we will name Fc, Fn, and Fb.
From the expression ofW it follows that if one insists in

eliminate the cosmological constant as it is done in the
standard Born-Infeld case, the price to pay is too high:
nonpositivity of the density of energy in the domain limited
by ðFn; FbÞ. It then follows that in the extended Born-
Infeld electrodynamics presented here, the asymptotic vac-
uum regime in a magnetic universe is inevitably [14].

VIII. CONCLUSION

The main motivation of the present work concerns the
necessity to construct a theory in which the combined long-
range fields shows a regular behavior. We start from the
generic idea that guided Max Born to the attempt to con-
struct a new nonlinear electrodynamics in order to display
a regular behavior of the electric field of a charged body.
The application of the Born-Infeld nonlinear theory in the
cosmological context within the framework of general
relativity shows singular behavior that is not acceptable
in the light of their original proposal. We are thus con-
ducted to an alternative form for the dynamics which
retains all nice properties on the pure electromagnetic
sector of the Born-Infeld theory without its main difficulty
when dealing within cosmology.
The model presented here displays many regular prop-

erties that should be worth further investigation. In par-
ticular, it has two basic properties that a classical theory
should pursue:
(i) Regular behavior of the electric field of a charged

body;
(ii) Regular behavior of the combined fields of electro-

dynamics and gravity in a cosmological framework.

We have shown that in the magnetic universe representing
a spatially homogeneous and isotropic Friedmann-
Lemaı̂tre geometry, there is no room for a singular
behavior—contrary to the Einstein-Maxwell and
Einstein-Born-Infeld description of electrodynamics and
gravity. The main properties of this cosmological scenario
are the following:
(i) The geometry of the Universe is driven by a mag-

netic fluid;
(ii) At the primordial phase this fluid mimics a cosmo-

logical constant in the unstable state of a very large
scale factor;

(iii) As a consequence, the universe starts to collapse;
(iv) The collapse stops when the universe attains the

minimum value of the scale factor amin ¼ ab;
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FIG. 4. Time evolution of the energy density. Asymptotically
when t ! �1, the energy density converges to the constant �2.
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FIG. 5. Time evolution of pressure. As the energy density,
pressure asymptotically goes to a constant: p ! ��.
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(v) The final configuration is identical to a perfect fluid
with the equation of state of the vacuum %þ p ¼ 0,
and the volume goes to infinity.

Thus, we can represent this model as a vacuum-to-
vacuum configuration. In order to make such model more
realistic, one must introduce ordinary matter that contrib-
utes to the total density of energy with a term which, for
instance, depends on the scale factor as a�3. This term has
to be added to our scenario presented in this paper. It is not
difficult to see that a phase controlled by such dust matter
interpolates between phase controlled by a�4 and the
accelerating cosmological vacuum. We shall address this
elsewhere.
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APPENDIX A: STATIC AND SPHERICALLY
SYMMETRIC ELECTROMAGNETIC SOLUTION

AND THE ASYMPTOTIC REGIME

In the present work we made an analysis of the modifi-
cation of electrodynamics in a cosmological context. We
are not arguing that these effects are due to the response of
the Universe to local electrodynamics. Some decades ago
Wheeler and Feynman made a conjecture that local prop-
erties of electrodynamics (e.g., the Lienard-Wiechert po-
tential) may just be a consequence of such cosmic response
inducing the elimination of advanced fields. However, if
one takes these modifications as a global change of electro-
dynamics, we should check consistency of the theory with
laboratory properties. Let us look into the case of the static
electric field generated by a point charged particle in the
new theory. For a general nonlinear Lagrangian L ¼ LðFÞ,
the equation of motion for the point charge reduces to

r2LFEðrÞ ¼ const:

In the case of the Lagrangian of our theory we get

E2

�
1þ 8�2�2E2

��2 þ E2 þ 4�2�2E4

�
1=2 ¼ q

r2
: (A1)

1. Asymptotic regime

Let us make an extra comment on the above case of
a point charge particle at spatial infinity. The energy-
momentum tensor has the form:

T�� ¼ �Lg�� � 4LFF��F
��; (A2)

which in the present case F01 ¼ EðrÞ is
T0
0 ¼ T1

1 ¼ �L� 4E2LF T2
2 ¼ T3

3 ¼ L: (A3)

In the asymptotic regime the energy-momentum tensor
takes the value

T0
0 ¼ T1

1 ¼ T2
2 ¼ T3

3 ¼ �2; (A4)

which mimics a � term.
If we add an extra term in the Lagrangian we could

eliminate the residual constant field at infinity. In the case
of Maxwell electrodynamics such ambiguity of choice
does not arise due to its linearity. However, for a nonlinear
electromagnetic theory a new possibility occurs which
concerns the geometrical structure at infinity. This means
that for the nonlinear electrodynamics the fact that at
infinity the field is a constant does not imply that it van-
ishes. Such a property can be translated in a formal ques-
tion, that is, what is the asymptotic regime of the geometry
of space-time: Minkowski or de Sitter?
In classical linear electrodynamics the answer to that

question was known and did not pose any ambiguity. This
is no longer so if a nonlinear electromagnetic field is
combined with the equations of general relativity. The
possibility of the de Sitter structure must be considered.
In theories in which a solution distinct from zero for the
equation LF ¼ 0 exists, such a question has to be inves-
tigated combined with cosmology.

APPENDIX B: THE FUNDAMENTAL STATE

A simple look into the equation of motion shows the
existence of a particular solution such that its energy
distribution is the same as the one in the vacuum funda-
mental state represented by an effective cosmological con-
stant. Indeed, the equation of motion is given by

ðLFF
��Þ;� ¼ 0: (A5)

Consider the particular solution F ¼ F0 ¼ constant such
that

4�2�2F0 � 1 ¼ 0:

This is the condition that satisfies the equation of motion
since LF vanishes at this value F0. In this state the corre-
sponding energy-momentum takes the form

T�� ¼ �g��;

where

� ¼ �LðF0Þ ¼ �2

�
1þ 1

16�2�4

�
1=2

:

This property is typical of the nonlinear electrodynamics,
since the linear Maxwell theory is not able to display such
particular solution.

M. NOVELLO, J.M. SALIM, AND ALINE N. ARAÚJO PHYSICAL REVIEW D 85, 023528 (2012)
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