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Toy model of a fake inflation
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Discontinuities in nonlinear field theories propagate through null geodesics in an effective metric that
depends on its dynamics and on the background geometry. Once information of the geometry of the
universe comes mostly from photons, one should carefully analyze the effects of possible nonlinearities on
electrodynamics in the cosmic geometry. Such a phenomenon of induced metric is rather general and may
occur for any nonlinear theory independently of its spin properties. We limit our analysis here to the
simplest case of nonlinear scalar field. We show that a class of theories that have been analyzed in the
literature, having regular configuration in the Minkowski space-time background, is such that the field
propagates like free waves in an effective de Sitter geometry. The observation of these waves would lead
us to infer, erroneously, that we live in a de Sitter universe.
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L. INTRODUCTION

We learned from general relativity that the geometry of
space-time is guided by gravitational forces. The possibil-
ity of such identification of gravity with geometry relies on
the universality of such interaction. Nevertheless, in certain
cases, dealing with a not so general interaction, it is worth
describing certain kinds of evolutionary processes by ap-
pealing to an effective modification of the geometry. This
is the case, for instance, with the propagation of waves of
spin zero (scalarons), spin one (photons) in nonlinear field
theories, and the sonic analogue of black holes [1-3].
Indeed, it was shown in these papers that the discontinu-
ities of nonlinear theories propagate through curves which
are null geodesics of an effective geometry §,, which
depends not only on the dynamics but also on the proper-
ties of the background field.

The importance of such analogue models, dealing with
modifications of the geometry which are not consequences
of gravitational processes, is related to the impossibility to
control gravitational fields in laboratory experiments. The
fact that we can, in principle, produce specific cases of
geometries which have similar properties of solutions of
the equations of general relativity, allows us to understand
a little better, the behavior of matter in gravity interaction
by the analysis of analogous situations, using others inter-
actions, which are capable to be under our experimental
control. The case of the emission of radiation by a black
hole is a typical one, once it is understood [4] that a similar
behavior could occur either in sonic or in electromagnetic
black holes [3].

Such an effective description allows us to pose the
following question: is it possible, for a given field theory
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to exhibit a configuration, satisfying nonlinear equations of
motion in Minkowski background and satisfying the prop-
erty that the propagation of the waves of the field experi-
ence in this state a prescribed geometry, to be specific, e.g.,
the one described by de Sitter?

In this letter we show that the answer is positive, and we
exhibit an example that corresponds to a situation in which
it occurs. In order to simplify our calculation, we consider
the case of a nonlinear scalar field configuration [5]. The
reason for this is twofold: it is the simplest case to deal with
and it constitutes a fundamental element of the scenario
that cosmologists are using nowadays as viable candidates
to represent the basic ingredient of the matter content of the
universe, that is, dark energy. According to this last moti-
vation, our study here can be understood as a toy model for
a fake inflation.

II. THE NONLINEAR DYNAMICS OF A SCALAR
FIELD

The observation of the acceleration of the universe has
brought into attention new candidates to describe forms of
matter with some unusual properties. One of these is the
so-called Chaplygin gas [6,7]. A remarkable property of
this fluid is that its energy content can be equivalently
described in terms of a scalar field that satisfies a nonlinear
dynamics obtained from the Born-Infeld action. A certain
number of distinct models of nonlinear theories is being
studied. The important point which is relevant for our
analysis concerns the propagation of the associated scalar
waves.

We consider a class of Lagrangians [8] of the form
L(w, @) = f(w) — V(g), where w := 9,,¢0* ¢. The first
and second derivatives of £ with respect to w are denoted
L, and L,,,, respectively. The equation of motion for ¢
reads
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We are interested in evaluating the characteristic surfaces
of wave propagation of this theory. The most direct and
elegant way to pursue this goal is to use the Hadamard
formalism [9-12]. Let X be a surface of discontinuity of
the scalar field ¢. We define the discontinuity of an arbi-
trary function f to be given by

[@ls = lim (flx + €) = flx = €)). 2

We take that ¢ and its first derivative 9, ¢ are continuous
across 2, while the second derivatives present a disconti-
nuity:

[e()]ls =0, 3)

[0,y =0, “4)

[0,0,0]ls = k,k,&(x), S

where k, := 9,2 is the propagation vector and £(x) the

amplitude of the discontinuity. Once g—; is continuous

across 2 and applying (3) to (1) we find
kyk,(L,g"" + 2L, 0*¢d"¢) = 0.

This equation suggests the introduction of an effective
metric defined by

g'ul/ = ng'bw + 2waaﬂ¢ay¢~ (6)

The inverse g,, of (6) is obtained by using the ansatz
8uv = Aguy t+ Bd,¢d, ¢ where the unknown coefficients

A and B are determined through the condition g#“¢,, =
&% . This leads to

. 1 2L,
g/.LV = r(gMV - 0 ap,goanD)r (7)

where we defined ¥ :=L,, + 2wL,,,.

III. METHODOLOGY

Since the scalar field ““see” the effective geometry one
can ask for nonlinear Lagrangians leading to a given
effective geometry in a fixed background. To this end,
one proceeds by choosing a Lagrangian, determining the
corresponding effective geometry, and solving the Euler-
Lagrange equations for ¢. Unfortunately since the effec-
tive metric depends on the field, such an approach is often
intractable. A convenient means to simplify the problem is
to choose W, this allows one to partly control the interplay
between the Lagrangian and the effective geometry (7). Let
us examine the simplest case where W = 1 which we use
hereafter. This choice obviously simplifies (7) and is
equivalent to the equation: L, + 2wL,,, = 1. This equa-
tion can be straightforwardly integrated to yield
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L =w+2A/w+C, (8)

where A is a nonzero c-number and C a constant with
respect to w, in particular, one can set C = —V/(¢p). This
case is worth considering, in particular, because of the
properties it provides for the effective metric, but besides
this it can be understood as a perturbation of the standard
linear theory. Just to present a toy model that corresponds
to a specific “fake inflation”” we will restrict the case in
which the potential takes the form [13]

V(g) = —A2x<1 + g) ©)

where we have defined x = ¢~ H/V¢,

IV. EFFECTIVE FRW METRIC IN A
MINKOWSKIAN BACKGROUND

We first set the background metric to the Minkowski
metric 7,,,, and use the convention (+, —, —, —). We now
show that for a field ¢ depending only on time ¢ = ¢(¢)
and satisfying the Lagrangian (8) the effective metric g felt
by ¢ is a spatially flat Friedmann-Robertson-Walker
(FRW) metric (with usual notations):

ds* = di* — a*(1)(dr?* + r*dQ?). (10)

Since ¢ does not depend on spatial coordinates the
Euler-Lagrange equations reduce simply to

16V
p(L,, +2(¢)°L,,) = — = —,
é(L,, +2(9)°L,,,) > 5e

where a dot means a derivative with respect to the time. At
this point we remark that since w = (¢)? the above equa-
tion reads
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Now, the effective invariant length element reads

1
ds? = gpdxtdx” = di* ——(dr* + r’dQ?).  (12)
Note that ¥ = 1, thatis 2L,,, = 1 —L,,, leadsto &,, = 1
[14]. Let us set the expansion factor on the effective FRW
geometry to an inflationary form: a(f) = ', H being a
reel positive parameter. For that choice the equation

1

1?2 =—
a(?) I
leads to
A
Jw = peT T (13)

Since /w is positive A must be negative. Assuming ¢ < 0
(calculations for ¢ = 0 are analogous), the above equation
can be integrated to
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0= A In(e?ft — 1) + K (14)
2H ’

where K is a constant, which we set equal to zero. Solving
(14) for t allows one to integrate (11) to obtain precisely the
form exhibited in Eq. (9) of the potential. In other words,
observation of the effective geometry g, would lead us to
believe, erroneously, that we live in a de Sitter geometry.
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Although we are dealing here with a toy model, a similar
situation can occur for other nonlinear theories, like non-
linear electrodynamics.
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