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We show that the Gordon metric belongs to a larger class of geometries, which are responsible to

describe the paths of accelerated bodies in moving dielectrics as geodesics in a metric q̂�� different from

the background one. This map depends only on the background metric and on the motion of the bodies

under consideration. As a consequence, this method describes a more general property that concerns the

elimination of any kind of force acting on bodies by a suitable change of the substratum metric.
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I. INTRODUCTION

In 1923 Gordon [1] made a seminal suggestion to treat
the propagation of electromagnetic waves in a moving
dielectric, modifying the metric structure of the back-
ground. He showed that the electromagnetic waves propa-
gate as geodesics not in the background geometry ��� but

instead in the effective metric

ĝ�� ¼ ��� þ ð��� 1Þv�v�; (1)

where � and � are constant parameters that characterize
the dielectric and v� is the four-velocity of the material
under consideration (which is not necessarily constant).
Later, it was recognized that this interpretation could be
used to describe nonlinear structures even when � and �
depend on the intensity of the electromagnetic field [2] or
more complicated functions of the field strengths [3]. In all
these cases, the causal cone, which is associated to the
effective metric, does not coincide with the null-cone of the
theory. The origin of this modification is due to the pres-
ence of a moving dielectric, which changes the paths of the
electromagnetic waves inside this medium.

We then face the question: could such particular descrip-
tion of the electromagnetic waves in moving dielectrics be
generalized for other cases, inwhich accelerated paths due to
other kind of forces would be described as geodesic motions
in an associated metric? We shall see that the answer is
affirmative and this kinematical map depends only upon
the acceleration of the body and the background metric.

Thismethod allows us to geometrize any force in the sense
that an arbitrary accelerated body in a given metric substra-
tum g�� is equivalently described as geodesic motion in an

effective geometry q̂��. We start by analyzing the general-

ization of the Gordon metric concerning the propagation of
electromagneticwaves inside arbitrary dielectricmedia. This
procedure mimics the trajectory which led to the geometri-
zation of the gravitational field as it was done by general
relativity (GR). This means to describe the effects of

acceleration of a particle on a gravitational field by a change
of the space-time metric, according to Einstein’s approach.
We compare this effective geometry to themetric in the post-
Newtonian approximation in order to see if it is possible to
reproduce some results of GR. Such procedure is exactly
what happens in the analog models of gravitation that deals
with systems kinematically equivalence, but dynamically
distinct.

II. GEOMETRIZING ACCELERATED PATHS

Consider a vector field1 u� with norm N � u�u� in a

given background g��. The acceleration of u� is given by

a� ¼ u�;�u
�:

Now let us construct an associated metric tensor q̂��, in

which the vector u� satisfies the equation

u�k�û� ¼ fðpÞu�; (2)

where kmeans covariant derivative with respect to q̂�� and

fðpÞ is an arbitrary function of the parameter p along
the curve. The contravariant components of the vector field
are defined by û� � q̂��u� and, consequently, the norm

defined in q̂�� is given by N̂ � q̂��u�u�. Whenever u� is

either a gradient or a normalized vector field, fðpÞ can be
set equal to zero without loss of generality.
Developing Eq. (2), we obtain

1

2
N̂;� þ u½�;��û� ¼ fðpÞu�; (3)

where ½ � means skew-symmetrization. Choosing q̂�� such

that this equation is verified, then the accelerated path of
u� in g�� becomes a geodesic motion in the associated

q̂��. Note that this is independent of its functional form.

We will show that the Gordon metric is a particular ex-
ample of this procedure and that there is a class of metrics
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1The natural velocity field we use to develop this section is a
given 1-form field u�. In the Gordon approach, the wave vector
k� is a gradient and, therefore, an exact 1-form.
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which play the same role in such ‘‘unforced-motion’’
process exhibiting different geometrical properties for
each element of the class.

III. LIGHT PATHS ON MOVING DIELECTRIC:
GORDON APPROACH

Let us define two skew-symmetric tensors F�� and P��

representing the electromagnetic field inside the material
medium. These tensors are expressed in terms of the field
strengths E� and H� and field excitations D� and B� as
follows

F�� � E�v� � E�v� þ ���
��v�B�;

P�� � D�v� �D�v� þ ���
��v�H�;

where v� is a given four-vector comoving with the dielec-
tric and ���

�� is the Levi-Civita tensor. We assume that the

electromagnetic properties of the medium are characterized
by the constitutive relations

D� ¼ ��
�ðE;HÞE�; B� ¼ ��

�ðE;HÞH�;

where ��
�ðE;HÞ and ��

�ðE;HÞ are arbitrary tensors.
Consider Maxwell equations on dielectric media [4] with
permittivity � and permeability � that characterize the
dielectric:

P��
;� ¼ 0; �F��

;� ¼ 0: (4)

From now on, we take the background metric as flat
Minkowski space-time and assume that � � �0 is a con-
stant and � ¼ �ðEÞ, where E � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�E�E

�
p

and E� is the
electric field. It is straightforward to generalize these equa-
tions to arbitrary curved space-time. Indeed, suppose an
observer with velocity v� comoving with the dielectric
and such that v�

;� ¼ 0. Then, Eqs. (4) written in terms of

the displacement vectors D� and B� become

D�
;�v

� �D�
;�v

� þ �����v�H�;� ¼ 0;

B�
;�v

� � B�
;�v

� � �����v�E�;� ¼ 0:
(5)

The projection with respect to v� yields the four inde-
pendent nonlinear equations of motion describing the
electromagnetic field inside the dielectric medium:

�E�
;� � �0E�E�

E
E�;� ¼ 0; �0H

�
;� ¼ 0;

� _E� � �0E�v�E�

E
E�;� þ ����	v�H	;� ¼ 0;

�0
_H� � ����	v�E	;� ¼ 0:

(6)

We define the unitary vector l� by setting E� � El�,
where l� satisfies l�l

� ¼ �1.
We use Hadamard conditions [5] to obtain the propaga-

tion waves through the characteristics surface� (for details,
see the Appendix). The symbol ½X�� represents the discon-
tinuity of X through this surface. Then, the discontinuities of
Eqs. (6) become

½E�;��� ¼ e�k�; ½H�;��� ¼ h�k�; (7)

where e�ðxÞ and h�ðxÞ are the amplitudes of the disconti-

nuities and k� � @�� is the wave vector. Thus, it follows

that

�k�e� � �0

E
E�e�E

�k� ¼ 0; �0h
�k� ¼ 0;

�k�v�e
� � �0

E
E�e�v

�k�E
� þ �����k�v�h� ¼ 0;

�0k�v
�h� � ����	k�v�e	 ¼ 0;

(8)

where �0 is the derivative of � with respect to E. Combining
these equationsweobtain the following intermediary relation

e�

�0k�v
� ½k�k� � ðk�v�Þ2� �

k�e�
�0k�v

� k
�

þ �k�v�e
� � �0

E
E�e�v

�k�E
� ¼ 0; (9)

which multiplying by E� yields the dispersion relation�
��� þ ð�0�� 1þ�0�

0EÞv�v� � �0

�E
E�E�

�
k�k� ¼ 0:

(10)

We see that the envelop of discontinuity propagates differ-
ently from Minkowski light-cone of the linear Maxwell
theory. In this case, the causal structure is given by an
effective Riemannian geometry2 ĝ��. From this point of
view, k� is nulllike in ĝ��, namely,

ĝ��k�k� ¼ 0: (11)

The expression of the effective geometry is given by

ĝ�� ¼ ��� þ ð�0�� 1þ�0�
0EÞv�v� � �0E

�
l�l�: (12)

A simple calculation show that its inverse is

ĝ��¼����
�
1� 1

�0�ð1þ
Þ
�
v�v�þ 


1þ

l�l�; (13)

where


 � �0E
�

:

In particular, when � is a constant, this formula reduces
to Gordon’s pioneer work, in which was shown that the
waves propagate as geodesics not in the background
geometry ��� but instead in the effective metric

ĝ�� ¼ ��� þ ð��0 � 1Þv�v�; (14)

2Mathematically, the metric tensor is a covariant tensor of
rank 2. However, in this paper, we sometimes shall call ‘‘metric’’
a contravariant tensor of rank 2. In particular, that is the way the
Gordon metric appears naturally.
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which depends only on the dielectric properties �0, � and
v�. The magnitude N of the wave vector in Minkowski
space-time (written in terms of dielectric properties) is
determined by the Gordon relation

ĝ��k�k� ¼ ð��� þ ð��0 � 1Þv�v�Þk�k� ¼ 0; ���! N

¼ ð1��0�Þðk:vÞ2; (15)

where k:v � k�v
�.

The analysis of the wave propagation in material media
and the study of effective geometry are particularly inter-
esting in the investigation of analog model [2,6] for the
understanding of kinematical properties at very small scale
of astrophysical objects (see details in Refs. [7,8]). We
quote Hawking radiation [9] and Unruh’s work on experi-
mental black hole evaporation [10] which are systemati-
cally studied and the modeling of specific dielectric media
is developed in order to eventually detect these tiny effects.
A more complete discussion on this topic was given in
Refs. [11,12] and references therein. Here we shall point
the similarity between these geometries in a later section.

IV. BINOMIAL METRICS

In recent years, an intense activity concerning features
of Riemannian geometries similar to those described by the
Gordon approach has been done [6]. In particular, that
allows a binomial form for both the metric and its inverse.
That is, its covariant and the corresponding contravariant
expressions are

q̂�� ¼ A��� þ B���; (16)

and

q̂�� ¼ ���� þ ����: (17)

This form of the metric requires that the tensor ��� must
satisfy the condition

����
�� ¼ m��

� þ n��
�: (18)

Such feature allows us to write the inverse metric similarly
to the binomial form of the metric, avoiding difficulties
with infinite series.3 Two remarkable examples of this
property are the scalar field (in which ��� ¼ @��@��)

and the electromagnetic field (in which ��� ¼ F�
�F��).

A. Special case

In this section, we limit our analysis to the simplest form
by setting ��� ¼ u�u�. In this case, the coefficients of
the covariant and contravariant forms are related by

A ¼ 1

�
; B ¼ � �

�ð�þ �Þ ;

where we set u�u��
�� ¼ 1 and write the metric in the form

q̂ �� ¼ ���� þ �u�u�:

The associated covariant derivative is defined by

u�k� ¼ u�;� þ �̂�
��u

�;

where the corresponding Christoffel symbol is constructed
using q̂��. The description of an accelerated curve4 in the
flat space-time as a geodesics in the metric q̂�� is possible

if the following condition is satisfied

ðu�;� � �̂�
��u�Þû� ¼ 0; (19)

where we have used the metric q̂�� to write û� � q̂��u� ¼
ð�þ �Þu�. Therefore,

ðu�;� � �̂�
��u�Þu� ¼ 0: (20)

In order to preserve the norm û�û� along the curve we

assume �;�u
� ¼ 0, without loss of generality (it corre-

sponds to a simple re-parametrization along the curves).
Once the acceleration in the background is defined by
a� ¼ u�;�u

�, the condition of geodetic motion in the

q̂��-geometry takes the form

a� ¼ �̂�
��u�u

�: (21)

The Christoffel symbol reduces to

�̂�
��u�u

� ¼ �þ �

2
u�u�q̂��;�: (22)

Using the expression of q̂�� in Eq. (22) and substituting the

result into the condition (21), it follows that

a� ¼ � 1

2

@�ð�þ �Þ
ð�þ �Þ :

It means that the acceleration vector a� must be a gradient

of a function �, i.e.,

a� � @��: (23)

Thus, the expression of the coefficients � and � of the
metric q̂�� are given in terms of the potential � of the
acceleration by

�þ � ¼ e�2�: (24)

3This is the case of GR as a field theory formulation. The exact
expression for metric tensor is set

g�� � ��� þ h��:

A consequence is that its inverse, the covariant tensor g�� is an
infinite series:

g�� ¼ ��� � h�� þ h��h
�
� � h��h

�
�h

�
� þ � � �

This formulation was introduced by Feynman, Gupta and others
(cf. Ref. [13]).

4Note that we are dealing with a collection of paths � that is
usually called a congruence of curves. It is understood that each
element of this collection concern particles that have the same
characteristics. For instance, if the acceleration is due to an
electromagnetic field, all particles of � must have the same
relation between its charge and mass, to wit a bunch of electrons.
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This simple example gives a very useful formula, which
exhibits the connection between geometrical and mechani-
cal quantities. Later in this paper, we shall analyze the case
in which � represents the gravitational potential.

B. Polynomial metrics

Gordon approach depends explicitly on the velocity v� of
the dielectric. Nevertheless such form of introducing an
effective metric is not unique. Indeed it seems reasonable
to present another metric q̂�� that describes the same results

obtained by Gordon and besides reduces the dependence on
the four-velocity v�. From practical reasons, it might be
useful to weaken this constraint of Gordon approach, once
it is easier to determine the shape of the electromagnetic
wave packet in the laboratory than constructing nonlinear
dielectric media with arbitrary tensorial parameters ��� and

���—despite of the great advances in this research area

recently [14,15].
Let us now show that exists a class of geometries which

play the same role as the Gordon metric depending only on
the angle k�v

� between the wave vector k� and the dielec-
tric four-vector v�. This is achieved by generalizations of
the last section. Let us list some examples:

Case A: the metric q̂�� is given by

q̂ �� ¼ ���� þ �k�k�;

and its inverse is

q̂ �� ¼ 1

�
��� � �

�ð�þ �NÞ k�k�:

Once the wave vector k� is a gradient of a given hyper-

surface �, then we have

k½�;�� ¼ 0:

Substituting this result in Eq. (3), it follows that k� must

satisfy

N̂ ðqÞ;� ¼ 0 ���! N̂ðqÞ � const;

where we define N̂ðqÞ � q̂��k�k�. That is, in order to

follow a geodesic motion in q̂��, k� must have constant

norm in the metric q̂��. The explicit expression for this

constraint is

N̂ðqÞ ¼ ð�þ �NÞN � 1: (25)

Note that this approach transforms the nonnormalized
wave vector k� in Minkowski background in a normalized

timelike vector in q̂��. It does not violate Lorentz invari-

ance, because everything happens inside the dielectric. We

note that it is not possible to fix N̂ equal to zero, otherwise
the metric is ill-defined. Therefore, k� is not a nulllike

vector in the Q̂-metric. Another feature is that the magni-
tude of the dielectric four-vector

q̂ ��v�v� ¼ �þ �ðk:vÞ2;
is not necessarily positive definite allowing observers with
velocity great than speed of light inside the medium.5 For
instance, if we set

�þ �ðk:vÞ2 ¼ 0;

then, using Eq. (15), we obtain

� ¼ ð�0�� 1Þ�
N

:

Substituting this result in Eq. (25), yields

� ¼ 1

�0�N
:

Therefore, the metric q̂�� with these values of � and �
produces the following outcome: the wave vector k�
becomes a normalized and timelike vector, while the dielec-
tric velocity v�, which was a timelike vector in the
Minkowski background, becomes a null geodesic in q̂��.

Therefore, the causal structure is no more determined by k�.

Remark that the metric q̂�� presented in the precedent
sections is not unique. We can enlarge the set of metrics
that have the same properties showed above adding other
terms to q̂�� provided the condition (18) is valid. To
exemplify these cases we consider:
Case B: the polynomial metric is given by

m̂ �� ¼ ��� þ �k�k� þ �a�a�:

It is straightforward to show that its inverse has an extra
term

m̂ �� ¼ ��� þ Bk�k� þ �a�a� þ�að�k�Þ;

where ðÞ means symmetrization. The coefficients of the
inverse metric are

B ¼ ��ð1� �a2Þ
X

;

� ¼ ��ð1þ �NÞ
X

;

and

� ¼ �� _N

2X
:

Here, we defined a2 � �a�a�, _N � N;�k
� and

X ¼ 1� �a2 þ �N � ��

� _N2

4
þ Na2

�
:

5In the laboratory, the angle between these two vectors is
easier to manipulate than the dielectric velocity field only. We
expect that this fact could be of reasonable utility in the research
of analog models.
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The appearance of an extra term also happens with the
inverse metric when we consider instead of a�a� a term of

the form að�k�Þ. In both cases an extra term is necessary
breaking the polynomial symmetry between the metric and
its inverse. Nevertheless we will present the calculations
for this case focusing only on the metric containing the
term a�a� and indicating that the results are very similar
when the other term is considered separately.

Thegeodeticmotion condition for thewavevector leads to

N̂ ðmÞ ¼ ð1þ �NÞN þ �

4
_N2 ¼ 0:

Note that this approach permits a null geodesic motion
for the wave vector k�. This is the simplest case in which

we regain the main Gordon result (k� as a null geodesic).

The sign of the norm of v� is undetermined and may be
chosen equal to zero, as we saw in the previous case.

Case C: the most general case involving first order
derivatives of k� occurs when the metric is expressed in

the form6

n̂ �� ¼ ���� þ �k�k� þ �a�a� þ �að�k�Þ

and its inverse is

n̂ �� ¼ 1

�
��� þ Bk�k� þ�a�a� þ�að�k�Þ:

The covariant metric coefficients are given by

B ¼ ��ð�� �a2Þ þ �a2

Z
;

� ¼ ��ð�þ �NÞ � �2N

Z
;

and

� ¼ ��ð2�þ _N�Þ � 2�� _N

2Z
;

where

Z ¼ �

"
�2 � ��a2 þ ��N þ � _N�

� ð��� �2Þ
 

_N2

4
þ Na2

!#
:

Once it involves more degrees of freedom, we can regain
all outcomes presented before, but with different algebraic
relations. In particular, the magnitude of the wave vector in
n̂�� is set

N̂ðnÞ ¼ ð�þ �N þ � _NÞN þ �

4
_N2:

Remark that the metric and its inverse have the same
number of polynomial terms as required from the begin-
ning. It did not happen in the case B where an extra term
was necessary in the inverse metric expression. Following
this reasoning, in the next section we shall use only the
cases A and C which satisfy the conditions (16) and (17).
Moreover, as an example, we will set the potential � as
being the Newtonian potential.

C. Application: identifying � with the
gravitational potential

In the weak field limit the description of Newton’s
gravity can be formulated in terms of a geometric repre-
sentation of the gravitational field. It can be done making
use of effective potentials, which correspond to the
well-known parameterized post-Newtonian approxima-
tion (PPN) [16]. In this section, we compare some PPN
results—particularly, those concerning general relativity
(GR) predictions, which improve the Newtonian theory of
gravity in the solar system—with some q̂—metric given
by the free-falling (geodesic) condition. We stress that
q̂�� just mimic the geodesic motion characteristic of the

solutions of GR. Note that there is no dynamical equation
for q̂�� and we are not proposing such theory. It is purely

a kinematical analogy.
This section shows that the analysis through geodesic

paths are much more general than GR, once it is nothing
but a choice of the metric. According to Poincaré’s ideas
upon geometrical descriptions of the world [17]: non-
Euclidean geometry is as legitimate as our ordinary
Euclidean space; the enunciation of the Physics in this
modified geometry would become more complicated, but it
still would be possible. In other words, it is possible to
choose the metric of the space-time, such that an acceler-
ated motion in a given geometry can be described as
geodesic in another one.
For convenience, consider Minkowski space-time in

spherical coordinates

ds2 ¼ dt2 � dr2 � r2d�2;

and an observer fieldu� ¼ ð1; fðrÞ; 0; 0Þ, which is a gradient
u� � @��, where� ¼ t� FðrÞ.7 This vector has a nonnull
acceleration given by

a� ¼ u�;�u
� ¼ 1

2
N;� ¼ ð0;�ff0; 0; 0Þ;

where prime 0 means derivative with respect to radial coor-
dinate r and N � u�u��

��.

We choose the scalar function �, which characterizes
the acceleration a� � @��, as identified with the

Newtonian potential. Then, it follows a relation between
N and � given by

6If we use higher derivatives of k� greater than that which
appears in the dynamics, then the metric tensor q̂�� is ill-defined.

7This situation can perfectly be adapted to describe wave
vectors in material media.
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N ¼ 1þ 2� ¼ 1� rH
r
;

where rH � 2M and M is the mass source of the gravita-
tional field (G ¼ c ¼ 1). To go further in the calculations,
we basically split the analysis in two distinct cases. One of
them gets immediately a wrong linear regime compared to
GR, while the other case, which is separated in two sub-
cases, can give the expected weak field regime.

Case I: consider the q̂-metric as follows

q̂ �� ¼ ��� þ �u�u�: (26)

The inverse metric is

q̂�� ¼ ��� � �

1þ �N
u�u�: (27)

The condition for u� to follow a geodesic motion in this

metric is provided by

u�k�û� ¼ 1

2
N̂ðqÞ;� ¼ 0; (28)

where û� � q̂��u� ¼ ð1þ �NÞu� and the magnitude of
u� in q̂��-metric is

N̂ðqÞ � û�u� ¼ ð1þ �NÞN;

which is imposed by Eq. (27) to be constant different from

zero. For convenience, we set N̂ðqÞ ¼ 1.

A power law expansion in terms of �� rH=r of
metric (27), which corresponds to the weak field limit,
gives the following expressions

q̂00 � 1� rH
r

�
1þ rH

r

�
þOð�3Þ;

q̂01 � �
�
rH
r

�
3=2
�
1þ rH

r

�
þOð�7=2Þ;

q̂11 � �1�
�
rH
r

�
2
�
1þ rH

r

�
þOð�4Þ:

(29)

We see that this metric does not correspond to linearized
Schwarzschild solution (even in Painlevé-Gullstrand coor-
dinates due to the power 3=2 instead of 1=2 in q̂01). This
metric is similar to some post-Newtonian approximation if
we consider a rectilinear moving source for the gravita-
tional field. The angular components of the metric are
identical to Minkowski ones.

Case II: let us consider another geometry n̂�� given by

n̂�� ¼ ��� þ Bu�u� þ�a�a� þ�að�u�Þ: (30)

The metric components are explicitly written as

n̂00 ¼ 1þ B; n̂01 ¼ fðB��f0Þ;
n̂11 � 1þ f2ðBþ �f02 � 2�f0Þ: (31)

The other spatial components are identical to Minkowski
metric in spherical coordinates. The condition which led
u� to follow a geodesic motion in this metric is imposed on

its magnitude

N̂ðnÞ ¼ N ��ða2N þ _N2=4Þ
Z

� const; (32)

where N̂ðnÞ � n̂��u
�u�. We also define

Z ¼
�
1þ _N�

2

�
2 � a2�þ NBþ a2N�2

� B�

�
a2N þ _N2

4

�
:

In this case, we can set either N̂ðnÞ ¼ 0 or N̂ðnÞ ¼ 1. Let
us analyze both cases separately:

Case II.a: if N̂ðnÞ ¼ 0, the assumption (32) implies that

� ¼ N

a2N þ _N2=4
:

Once u� is nulllike in n̂—metric, we expect to regain the

metric component of the PPN approximation responsible
to describe correctly the light propagation deflection,
which is given by the n̂11 component of the metric. So,
using the considerations above, we set

n̂00 � 1þ r

rH
� rH

r
þOð�2Þ; n̂01 � 0;

n̂11 � �1� rH
r
þ
�
rH
r

�
2 þOð�3Þ:

(33)

Note that a strange linear term appears in n̂00 due to our
assumptions. If we try to avoid this term making some
coordinate transformation, then the asymptotically flat
regime is lost by other metric components, in such way
that the trouble persists.

Case II.b: in the case of N̂ðnÞ ¼ 1, we can correctly

reproduce the linear approximation of Schwarzschild so-
lution. That is,

n̂00 � 1� rH
r
þ 2

�
rH
r

�
2 þOð�3Þ; n̂01 � 0;

n̂11 � �1� rH
r
þOð�3Þ:

(34)

Note that n̂00 differs from PPN results already in second
order approximation in � (whose the expected value in �2 is
1=2 instead of 2). Therefore, it will surely produce some
discrepancy in high order terms of the expansion.
Remark that these calculations were basically done in

order to illustrate some analogies between these geometries
and those studied in analog models of gravity. For this
reason, the first order approximation is enough to show their
strong correlation. If someone takes this approach looking
for a perfect kinematical analogy between Schwarzschild
metric and some n̂��, then the introduction of a nonlinear

scalar potential � in Newtonian equation of acceleration
becomes necessary and, therefore, it can reproduce exactly
the Schwarzschild geodesics, for instance. Notwithstanding,
we will not enter into the details of this generalization
because it involves a complicated question about the
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physical meaning of the dynamics of such nonlinear poten-
tial, whereas in this paper we want to discuss only kinemati-
cal properties of the particle trajectory.

V. CONCLUSION

In this paper, we presented an extension of the Gordon
metric constructing a larger class of geometries which
describes accelerated motions in Minkowski space-time
as geodesics in an effective geometry q̂��. This effective

metric depends only on the background metric and on the
velocity vector of the accelerated body. In particular, we
analyzed accelerated paths of light inside a moving di-
electric and constructed a class of geometries with pecu-
liar properties in comparison to Gordon’s approach, but
with similar kinematical effects. Ultimately, we gather

this new class of geometries, that we call Q̂-metrics, with
the effective geometries of nonlinear electromagnetism,
producing a collection of possible metric structures of the
space-time, which has several applications in the theory
of analog models of gravity. We will come back to this in
the future.
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APPENDIX: HADAMARD’S METHOD FOR
DISCONTINUITIES

We analyze the discontinuities of the electromagnetic
field according to the standard Hadamard method and
obtain the dispersion relation for the wave vector k�.

Let � be a surface of discontinuity of the field A�. The

discontinuity of an arbitrary function f is given by:

½fðxÞ�� ¼ lim
�!0þ

ðfðxþ �Þ � fðx� �ÞÞ: (A1)

The field A� and its first derivative @�A� are continuous

across �, while the second derivatives present a
discontinuity:

½A��� ¼ 0; (A2)

½@�A��� ¼ 0; (A3)

½@�@�A��� ¼ k�k�
�ðxÞ; (A4)

where k� � @�� is the propagation vector and 
�ðxÞ is
the amplitude of the discontinuity. Substituting these
discontinuity properties in the equation of motion

���F��;� � ���A½�;��;� ¼ 0;

it follows that:

k�k��
�� ¼ 0:

This means that the discontinuities of the electromag-
netic field propagate as null geodesics in the Minkowski
metric ���.
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