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We describe what cosmology looks like in the context of the geometric theory of gravity based on a
single scalar field. There are two distinct classes of cosmological solutions. An interesting feature is the
possibility of having a bounce without invoking exotic equations of state for the cosmic fluid. We also
discuss cosmological perturbation and present the basis of structure formation by gravitational instability
in the framework of the geometric scalar gravity.

DOI: 10.1103/PhysRevD.90.123540 PACS numbers: 98.80.-k, 04.25.Nx, 04.50.Kd

I. INTRODUCTION

Although general relativity (GR) is incontestably the
paradigm for the study and the description of gravitational
phenomena, many alternative proposals have been put
forward in recent years. These attempts try to modify GR
in several respects, in particular to get around the need for
introducing dark matter and dark energy which represent
things unknown at the laboratory scale.
Most of the proposed models are effective in the realm

of cosmology, where the intensity of the gravitational field
is strong enough to excite new phenomena, possibly not
contemplated by GR. However, because of the highly
paradigmatic status of GR, only a narrow set of possible
modifications has been discussed to date. A typical example
consists in replacing the scalar curvature R in the Einstein-
Hilbert action with a somehow arbitrary function fðRÞ.
This is not the road that one should follow according to

a certain time-honored thinking of the epistemological
critique. Following Mach, the natural way to undertake a
deep modification of a paradigmatic theory is to return to the
main ideas of its anlagen and reexamine its foundations and
its evolutionary way to become paradigmatic in a historical
context. Alternative theories can emerge in this way. Of
course, this is not a guarantee of success for a new proposal
that intends to substitute or modify substantially the estab-
lished theory. But at least it is a road that a scientist may want
to follow to find a realistic alternative to the ancient scheme.
After the advent of special relativity it became evident

that a profound modification of Newton’s gravity was
unavoidable. The simplest one was to trade the unique
spatial Newtonian potential ΦN for a scalar field Φ defined
on the full Minkowski space-time. However, the proposals
by Nordström [1], Einstein and Grossmann [2] and a few
other similar attempts were not successful and rapidly
discarded. The difficulties of those scalar theories and the

reasons for their dismissals are described e.g. in [3,4] (and
references therein). Drawbacks range from theoretical to
observational; they are consequences of the hypothesis
already stated in the Einstein-Grossmann proposal [2] that
scalar gravity should emerge from three basic assumptions:

(i) The theory is described in a conformally flat
geometry and the background Minkowski metric
is observable;

(ii) The source of the gravitational field is the trace of
the energy-momentum tensor;

(iii) The scalar field is the (special) relativistic generali-
zation of the Newtonian potential.

In a recent paper [5] we have proposed an alternativeway
for describing the gravitational interaction in terms of a
scalar field Φ, a geometric scalar gravity (GSG), where the
above three assumptions do not hold: in particular, in GSG
the source of the gravitational field is not the trace of the
energy-momentum tensor and the theory is not a special
relativistic scalar gravity. The adjective geometric pinpoints
indeed that GSG is a metric theory of gravity, as GR is.
We follow the main idea of general relativity and assume as
an a priori that gravity is described by a Lorentzian curved
geometry. In general relativity the ten components of
the metric tensor are the basic variables of the theory
(up to diffeomorphism invariance). Here the metric tensor
is determined by the gradient of one fundamental inde-
pendent physical quantity represented by the scalar field Φ.
This means that although we make use of a scalar field
to represent gravitational interaction, we do not follow the
previous examples of scalar gravity, as, for instance,
the Einstein-Grossmann “Entwurf Theory” [2]. We argue
that most of the difficulties of the previous scalar models
are rooted in their missing the main idea that makes the
success of general relativity, that is gravity is a metrical
phenomenon [6].
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In other words, we may recognize in a metric theory of
gravity two separate independent assertions:
(i) gravity is a geometrical phenomenon represented by a

Lorentzian metric gμν;
(ii) the quantity gμν may be associated either with a

symmetric tensor hμν or with a scalar Φ, or some
other field possibly depending on tensor indices.

Einstein chose to introduce a full second order tensor to
represent the gravitational metric. However, this was not
mandatory. The above two assertions are formally inde-
pendent, and the first one comes first. The choice between
the different possibilities mentioned in the second state-
ment that produce acceptable models (if any) in agreement
with the observations above is a matter of taste and
mathematical ability.
Several objections have been raised against scalar gravity

(see, for instance, [7]). A careful inspection shows that
those criticisms apply to models that do not satisfy the first
(Einstein’s) hypothesis and do not relate scalar gravity to a
modification of the space-time geometry; once more, this is
the main drawback of the old proposals of scalar gravity.
All these criticisms do not apply to GSG. Furthermore,

our simple model [5] gives right answers—the same as in
GR—at least for some important gravitational phenomena
such as the solar system tests and at the cosmological level.
GSG also provides a geometry for slowly rotating bodies
(as those observed in the gravity probe-B experiment)
similar to the one found in GR.
How it is that such a simple theory—that uses only one

function to describe gravity rather than ten—can account
for all these phenomena along the same lines as GR?
Should this fact points in favor of a feature hidden in GR
that GSG is capturing or is it possible that such GSG (or a
more refined version of it) can effectively produce a new
and independent view of gravitational processes?
Irrespective of the answer to these questions, there are

certain properties of GSG that may solve certain problems
that GR is able to deal with only making appeal to unusual
behavior of matter. In particular, in this paper, we show how
GSG gets around the question of the cosmological singu-
larity that is understood as almost inevitable in standard
relativistic cosmology, but that is avoided in GSG as we are
going to show.
Other features that deserve to be mentioned here are the

possibility offered by GSG to define an energy-momentum
tensor for gravity as opposed to the pseudotensors that have
been proposed to represent the energy distribution of
gravity in GR. Also, the dynamical bridge relating the
propagation of the scalar field in an unobserved auxiliary
Minkowski space-time and the corresponding dynamical
propagation in the gravitational metric might suggest that
perhaps it should be simpler to quantize gravity using ideas
from GSG.
In the end of this introduction wewould like to recall that

GSG is newly born and its properties and solutions are

largely yet unknown. For instance, we still did not analyze
completely the problem of radiation emission from com-
pact systems, that is the main pillar sustaining the glory of
GR. Other aspects of gravity should be analyzed carefully
in the future as well. We hope that this work can at least
stimulate a regain of interest and thinking about scalar
theories of gravity.

II. GEOMETRIC SCALAR GRAVITY: A SHORT
SUMMARY

The modifications of Newton’s gravity based on a scalar
field, proposed in the first decade of the 20th century, just
after the birth of special relativity and before the advent of
general relativity, all failed.
Some of the reasons behind those failures have been

reported in [5], where we proposed an alternative model,
also based on a scalar field, that does not share the
drawbacks of the old attempts. Let us recall its construction
in a direct comparison with GR.

A. Basic features of GR

(i) A general metric may always be decomposed as the
sum of a reference Minkowski metric plus a (not
necessarily small) perturbation as follows:

gμν ≡ ημν þ hμν: ð1Þ
This binomial form is exact. The covariant inverse
gμν is, however, generally speaking, not a binomial
but an infinite series,

gμν ¼ ημν − hμν þ hμαhαν þ � � � :

(ii) The second order tensor field hμν describing the
gravitational interaction satisfies a nonlinear field
equation.

(iii) The theory satisfies the principle of general covari-
ance. In other words, hμν is not a field restricted to
the realm of special relativity.

(iv) Newton’s gravity is reproduced in a suitable
approximation. hμν is related in a nontrivial way
to the Newtonian potential ΦN .

(v) The background Minkowski metric is not observ-
able. Matter and energy interact gravitationally only
with gμν. Test particles move along timelike geo-
desics and electromagnetic waves propagate along
null geodesics relative to gμν.

B. Basic features of GSG

(i) In GSG, Eq. (1) is specialized to a particular form
built in terms of a scalar field Φ:

qμν ¼ αημν þ β

w
∂μΦ∂νΦ; ð2Þ

where w ¼ ημν∂μΦ∂νΦ; the covariant inverse is now
also a binomial:
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qμν ¼
1

α
ημν −

β

αðαþ βÞw ∂μΦ∂νΦ: ð3Þ

(ii) The scalar field Φ describing the gravitational
interaction satisfies a nonlinear field equation. The
functionals α and β depend on Φ and are fixed
according to observations. Use of the solar system
tests and the Newtonian limit [5] leads to the choice

α ¼ expð−2ΦÞ; ð4Þ

Z ¼ αþ β ¼ α3V ¼ ðα − 3Þ
4

2

: ð5Þ

(iii) The theory satisfies the principle of general covari-
ance. In other words, Φ is not a field restricted to the
realm of special relativity.

(iv) Newton’s gravity is reproduced in a suitable
approximation. Φ is related in a nontrivial way to
the Newtonian potential ΦN .

(v) The background Minkowski metric is not observable.
All kinds of matter and energy interact with Φ
only through the pseudo-Riemannian metric qμν. Test
particles follow timelike geodesics, and electromag-
netic waves propagate along null geodesics relative to
the metric qμν.

C. Field equations

In GSG the space-time metric is not a fundamental
independent quantity but a function of the scalar field Φ.
The latter is assumed to satisfy the following equation
(see [5] for details): ffiffiffiffi

V
p

□Φ ¼ κχ; ð6Þ
where κ ¼ 8πG=c4. In this equation V is the potential given
in Eq. (5); the source of the field at the right-hand side (rhs)
is constructed out of the following expressions:

E ¼ 1

Ω
Tμν∂μΦ∂νΦ; ð7Þ

Cλ ¼ β

αΩ
ðTλμ − EqλμÞ∂μΦ; ð8Þ

χ ¼ −
1

2

�
T þ αþ 3

α − 3
Eþ Cλ

;λ

�
; ð9Þ

where T ¼ qμνTμν and Ω ¼ qμν∂μΦ∂νΦ.

III. COSMOLOGY

A. Vacuum cosmological solutions

Let ds2M ¼ ημνdxμdxν be the auxiliary Minkowski metric
written in the standard way and suppose that the scalar
fields depend only on the time coordinate x0 i.e.
Φ ¼ Φðx0Þ. The nonzero coefficients of qμν are simply

q00 ¼ αþ β; q11 ¼ q22 ¼ q33 ¼ −α; ð10Þ

and the line element takes the form [see Eq. (5)]

ds2 ¼ 4dx02

ð3 − αÞ2 −
1

α
ðdx2 þ dy2 þ dz2Þ: ð11Þ

In GSG homogeneity of the field forces isotropy of the
metric. Let us consider in the above circumstances the
vacuum field equation

□Φ ¼ 0 ð12Þ

is promptly reduced to a quadrature,

α − 3

2α
5
2

∂α
∂x0 ¼ 2

ffiffiffiffi
A

p
; ð13Þ

1 − α

α
3
2

¼ 2
ffiffiffiffi
A

p
x0; ð14Þ

where A is an integration constant. Equation (13) implies
that the derivative of αðx0Þ diverges at α ¼ 3 (apart from
the trivial case A ¼ 0). Let us restrict for the moment our
attention to values of the potential where the Newtonian
limit of the theory takes place i.e. 0 < α < 3; the relation
between x0 and α is monotonous and can be inverted by
solving a simple cubic equation. Let us denote the result
α ¼ α0ðx0Þ with the geometry given by Eq. (11). Here is a
first unexpected result. In GR, the cosmological hypothesis
forbids the existence of curved cosmological vacuum
solutions (the Milne universe is nothing but the flat
Minkowski space in disguise). However, this becomes
possible going beyond the isotropic case. The well known
Kasner solutions constitute a class of geometries represent-
ing empty spatially homogeneous but anisotropic universes.
In GSG there exist spatially homogeneous and isotropic
solutions representing empty conformally flat universes.
Let us examine Eq. (11) a little closer. There are two

apparent singularities at α0 ¼ 0 and α0 ¼ 3. Are they real
singularities? Computing, for instance, the scalar curvature
we get

R ¼ 9Aα30 ð15Þ

so thatR is perfectly regular at both ends of the interval (0,3).
To understand better the situation it is advantageous to
introduce a new time variable by the following definitions:

t ¼ 1

3
ffiffiffiffi
A

p ðα0ðx0ÞÞ−3
2;

α0ðtÞ ¼ α0ðx0ðtÞÞ ¼ ð3
ffiffiffiffi
A

p
tÞ−2

3 ð16Þ

(where we supposed that A > 0). Since
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∂t
∂x0 ¼

1

2
ffiffiffiffi
A

p ðα0ðx0ÞÞ−5
2
∂α0
∂x0 ¼

2

3 − α0ðx0Þ
; ð17Þ

the new variable may be interpreted as the cosmic time and
the metric takes the cosmological form

ds2 ¼ dt2 − ð
ffiffiffiffiffiffi
9A

p
tÞ23ðdx2 þ dy2 þ dz2Þ: ð18Þ

While the cosmic time t initially belongs to the interval
ð2=ð9 ffiffiffiffiffiffi

3A
p Þ < t < ∞Þ, the solution (18) makes sense in the

whole interval ð0;∞Þ. The Ricci scalar is now written as
follows:

R ¼ 2

3t2
: ð19Þ

At t ¼ 0 there is an initial singularity also known as a big
bang. After the big bang an empty curved space-time comes
into being.

B. Cosmological equation

By following the previous example let us adopt the
cosmic time t in the line element (11) by a similar change of
coordinates:

dt ¼ 2dx0=ð3 − αÞ; α ¼ 1=aðtÞ2; ð20Þ

ds2 ¼ 4

ð3 − αÞ2 ðdx
0Þ2 − 1

α
ðdx2 þ dy2 þ dz2Þ; ð21Þ

¼ dt2 − aðtÞ2ðdx2 þ dy2 þ dz2Þ: ð22Þ

The relation (4) now reads a ¼ expΦ, and we see that the
derivative of the field with respect to (w.r.t.) the cosmic time
is interpreted as the Hubble parameter:

H ¼ _a
a
¼ _Φ: ð23Þ

The left-hand side (lhs) of the field equation is rewritten as
follows:

ffiffiffiffi
V

p
□Φ ¼ aj3a2 − 1j

�
ä
2a

þ _a2

a2

�
: ð24Þ

As for the rhs we used (20) into (9) to obtain

χ ¼ −
1

2

�
T þ

�
1þ 3a2

1 − 3a2

�
Eþ Cλ

;λ

�
: ð25Þ

Because the gravitational field depends only on t, it is
natural to expect that all the relevant quantities have only
temporal dependence too. For the sake of simplicity we
proceed here with that cosmological hypothesis; i.e. we
assume that the components of the energy-momentum
tensor of a perfect fluid decomposed in terms of the cosmic

observers vμ ¼ δμ0 depends only on time. Then, one has
immediately that

E ¼ T00 ≡ ρ; T ¼ ρ − 3p;

C0 ¼ 0; and Ci ¼ β

αH
Ti0: ð26Þ

The divergence of Cλ vanishes, and Eq. (6) reads

aj3a2 − 1j
�
ä
a
þ 2

_a2

a2

�
¼ κ

�
3pþ

�
2ρ

3a2 − 1

��
: ð27Þ

There are therefore two regimes classified by the sign of the
quantity 3a2 − 1. As we will see below, the time evolution
respects that sign, and therefore GSG cosmologies based on
a perfect fluid are divided into two classes. We call the
solutions belonging to the first class (i.e. solutions such that
3a2 > 1) big universes and the solutions belonging to the
second one small universes. The adjective “small” alludes
to the fact the scale factor takes values in a compact
interval, but also when this occurs the spatial section is, of
course, infinite (and flat). The existence of two classes of
solution is a consequence of the choice of the potential (5).
Note that despite the line element, the dynamics of the
theory is not invariant under rescalings aðtÞ → μaðtÞ,
where μ is a constant. This will have important conse-
quences afterwards.

IV. BIG UNIVERSES, THE BOUNCE

In this section we assume that 3a2 > 1. We will see that
this inequality is conserved by the time evolution, and
therefore the universe bounces at a minimal value of the
scale factor. Before doing this let us comment on the
general structure of the cosmological equation (27). When
the acceleration is small compared to the squared velocity,
the above equation reduces to an equation similar to the
Friedmann equation: in the case of a dustlike fluid we get

�
_a2

a2

�
≃ fðaÞρ; ð28Þ

where fðaÞ is positive. In other cases deviations from GR
are stronger. In particular, in the opposite regime, when the
squared velocity is small w.r.t. the acceleration, the above
equation mimics the Raychaudhuri equation but with a sign
of the rhs which is opposite w.r.t. GR,

ä
a
≃ ½2fðaÞρþ 3p�: ð29Þ

A. Barotropic fluids

For a barotropic perfect fluid whose equation of state is
p ¼ λρ conservation of the energy-momentum tensor
implies as usual that
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ρ ¼ ρ0a−3ð1þλÞ: ð30Þ

For big universes the cosmological equation becomes

ä
a
þ 2

_a2

a2
¼ κρ0

2þ 3λð3a2 − 1Þ
a4þ3λð3a2 − 1Þ2 : ð31Þ

This equation can be linearized by posing u ¼ _a2,

d
da

ða4uÞ − 2κρ0ð2þ 3λð3a2 − 1ÞÞa1−3λ
ð3a2 − 1Þ2 ¼ 0; ð32Þ

and easily integrated to give

u ¼ _a2 ¼ A
a4

−
2κρ0

a2þ3λð3a2 − 1Þ ; ð33Þ

ä ¼ −
2A
a5

þ κρ0ð2þ 3λÞ
a3þ3λð3a2 − 1Þ þ

6κρ0
a1þ3λð3a2 − 1Þ2 : ð34Þ

A is a strictly positive constant of integration. As should be
expected, the above expression is singular at 3a2 ¼ 1.
However, this value is unattainable because the square of
the velocity becomes zero at a minimal value am strictly
greater than 1=

ffiffiffi
3

p
. At that point the universe bounces.

The possibility of having a bouncing for standard fluids
is quite remarkable (see Fig. 1). In Friedmann–Lemaître–
Robertson–Walker (FLRW) cosmology the bouncing is
possible either by nonminimal coupling with matter fields
or by negative pressures [8]. Indeed, in order to have an
extremum of the scale factor aðtÞ the expansion factor Θ ¼
3_a=a must vanish and its derivative be positive. As is well
known, in GR the Raychaudhuri equation implies that this
is possible when

_Θþ Θ2

3
¼ −

ρþ 3p
2

> 0:

Here the situation is different: the universe always bounces
with only one notable exception, the vacuum solution
discussed before where there is an initial singularity.
Indeed, for empty universes (i.e. ρ0 → 0) Eq. (33) reduces to

_a2 ¼ A
a4

; ð35Þ

which is promptly integrated to find again that

aðtÞ ¼ ð
ffiffiffiffiffiffi
9A

p
tÞ13; ð36Þ

apart from an irrelevant additive constant.
Letting A → 0 in Eq. (35) we get as a special case the

constant solution aðtÞ ¼ const, which represents a flat
geometry. This solution has, however, to be intended as
a limiting case.

B. Dust

Let us discuss the case of dust in some detail.
Equation (33) reduces to

u ¼ _a2 ¼ A
a4

−
2κρ0

3a4 − a2
: ð37Þ

Here the integration constant has to satisfy the following
bound for the universe to exist:

A0 ¼ A −
2κρ0
3

> 0: ð38Þ

FIG. 1 (color online). On top, the scale factors for λ ≥ 0 (dot-
dashed red lines), λ < 0 (dashed gold lines) and the vacuum
solution ρ0 ¼ 0 (dotted blue line), where we set A ¼ 2 and κρ0 ¼
1 except for the vacuum case. The singularity a ¼ 1=

ffiffiffi
3

p
is

represented by the horizontal solid line. On bottom, their
behavior in the vicinity of the bounce. Note that for the same
values of the constants, the bounce for cyclic universes occurs at
smaller values of the scale factor than the noncyclic ones.
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Equation (37) may be rewritten in terms of the new constant
A0 as follows:

_a2 ¼ A0

a4
−
2κρ0
3a4

1

ð3a2 − 1Þ : ð39Þ

At late times the universe filled with dust behaves as if it
were empty, i.e. aðtÞ ∼ ð ffiffiffiffiffiffiffiffi

9A0

p
tÞ1=3. On the other hand, the

cosmic evolution at early times is very different w.r.t. the
empty case (35). As we already said, the biggest difference
is that there is no initial singularity but rather a bouncing at
the minimal value of the scale factor

a2b ¼
1

3

�
1þ 2Δ

3

�
; ð40Þ

where Δ ¼ κρ0=A0. At the bounce the acceleration is
positive and inversely proportional to the energy density ρ0,

äb ¼
243A7=2

0

2κρ0ð3A0 þ 2κρ0Þ3=2
¼ 243A0

2Δð3þ 2ΔÞ3=2 : ð41Þ

Taking the limit ρ0 → 0 (i.e. the vacuum limit) the minimal
value of the scale factor ab tends to 1=

ffiffiffi
3

p
but the

corresponding acceleration diverges; there is, however,
no contradiction with the regularity of the vacuum solution
(18) because the dust solution does not converge uniformly
to the vacuum solution in this limit.
The accelerating phase does not last forever. The accel-

eration diminishes with the expansion and vanishes when
the scale attains the value

a2d ¼
1

3

�
1þ Δ

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ 4Δ=3

p
2

�

after which the universe starts decelerating. On the other
hand, the scalar curvature

R ¼ −6
�
ä
a
þ _a2

a2

�
ð42Þ

stays negative and changes signs only when the scale
reaches the value

a2c ¼
1

3

�
1þ 2Δ

3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δð2Δþ 3Þp

3

�
:

To put the results in perspective, in GR the scalar
curvature is related to the trace of the matter energy-
momentum tensor; R ¼ −κρ in the case of dust. Thus, for
pressureless fluid, no change of the sign of R is possible.
In GSG the connection between R and the energy content
of the universe is more involved, and the above example
shows that such change is possible without imposing

unusual conditions on matter content and/or on the geom-
etry of the universe.
Fluids with positive λ (including radiation) have a similar

behavior. They all have a bounce, followed by an early
accelerated phase and a final decelerated phase. The
expansion lasts forever. At late times, they all share the
same behavior (36) of the empty universe irrespective of
the value of λ.

C. λ < 0: static solutions and cyclic universes

When the pressure is negative, i.e. for λ < 0, there exist
static cosmological solutions of Eq. (31),

a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
−

2

9λ

r
>

1ffiffiffi
3

p ; ð43Þ

corresponding to the integration constant

Aλ ¼ 3jλjκρ0
�
1

3
þ 2

9jλj
�

1þ3jλj
2

: ð44Þ

Note that this is the minimal possible value of the constant
A relative to the equation of state λ (below this value _a2

would be negative for all a). For any choice A > Aλ there
are two values where _a ¼ 0. Since the acceleration is
positive for a ¼ amin and negative for a ¼ amax, the latter
are inversion points and the universe eternally oscillates
between a minimal and a maximal value of the cosmic scale
factor amin ≤ a ≤ amax. Therefore a negative pressure
produces a static universe which at variance with GR is
spatially flat and is stable.

V. SMALL UNIVERSES

We now shortly consider the small universes, i.e.
cosmologies such that a2 < 1=3 (cf. details in Fig. 2).
Taking into account the absolute value at the lhs of Eq. (27),
for small universes the cosmological equation becomes

ä
a
þ 2

_a2

a2
¼ −κρ0

2þ 3λð3a2 − 1Þ
a4þ3λð3a2 − 1Þ2 : ð45Þ

Proceeding as before we solve for the scale factor,

_a2 ¼ A
a4

− 2κρ0
a−2−3λ

1 − 3a2
: ð46Þ

Again, A is a positive integration constant and, once more,
the singularity at a ¼ 1=

ffiffiffi
3

p
cannot be attained. Therefore

big universes and small universes are two disjoint classes of
cosmological solutions of GSG.
Now static solutions exist for positive values of the

parameter λ. More precisely for λ > 2=3 there is an
equilibrium solution at
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a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
−

2

9λ

r
<

1ffiffiffi
3

p ð47Þ

corresponding to

Aλ ¼ 3λκρ0

�
1

3
−

2

9λ

�
1−3λ

2

: ð48Þ

For any choice A > Aλ there are two values where _a ¼ 0.
The singularity at a ¼ 0 cannot be attained, and the
universe bounces at a ¼ am > 0. All in all, for λ > 2=3
and A > Aλ the universe eternally oscillates between a
minimal and a maximal value of the cosmic scale fac-
tor 0 ≤ amin ≤ a ≤ amax < 1=

ffiffiffi
3

p
.

On the contrary, for1 λ < 2=3 the universe always runs
into the singularity at a ¼ 0. In these cases there is an initial
big bang followed from a decelerated phase. The universe
reaches its maximum scale and then stops entering in a
contracting phase that unavoidably ends in the singularity
at a ¼ 0. It should be remarked that while such a behavior
is possible in FLRW cosmology only for spatially closed
universes, here we are always dealing with a conformally
flat universe; i.e. the spatial section is flat.
We can have some hints about the values of the

parameters entering in Eq. (46) by using the values of
the cosmological parameters today (t). So, let us suppose

that the baryonic matter contribution is the most relevant
fluid at this time.2 Thus, we obtain

A
a6t

¼ H2
t þ

16πGρt
atð1 − 3a2t Þ

:

If the parameter Ht ¼ 100h km s−1 Mpc−1 and ρt ≤ 3 ×
10−10 erg cm−3 are not constrained by any model,3 then it is
a formula between A and at. Another way to determine
these arbitrary parameters is at the bounce. When _a ¼ 0,
we get

A ¼ 16πGρba5b
abð1 − 3a2bÞ

;

where the cosmological parameters in this case are the size
of the bounce ab and the energy density ρb at that moment.
Note that these formulas are only useful for a model-
independent analysis of the cosmological parameters.

VI. COSMOLOGICAL PERTURBATIONS

The aim of this section is to explore whether in GSG
cosmology there is room for structure formation by the
gravitational instability of initially small overdensities of
an homogeneous fluid. We will focus on the behavior of
perturbations of dust cosmology in the big universe sector
and in the decelerated phase.
Linear scalar perturbations in GSG correspond to per-

turbations of the scalar field

Φ → Φþ δΦ;

where Φ is the background field and δΦ is a “small”
perturbation.
Let us start by considering the scalar field as a function

of x0 where fxμg is a set of Lorentzian coordinates; in the
above coordinates the Minkowski metric is written in the
standard form ημν ¼ diagð1;−1;−1;−1Þ. At first order in
δΦ the unperturbed metric gets the following corrections:

δq00 ¼ −αðα − 3ÞδΦ; ð49Þ

δq0i ¼ −βδij
δΦ;j

Φ;0
; ð50Þ

δqij ¼ 2αδΦδij; ð51Þ

where the comma indicates the partial derivative w.r.t. the
corresponding coordinate, as usual. It is seen that the
perturbation δq0i will not be small at all when Φ;0 ≃ 0.
In that case the perturbative approximation may break
down or else that problem may be just a gauge artifact.

FIG. 2 (color online). The scale factors for λ ≤ 2=3 (dot-dashed
red line), λ > 2=3 (dashed gold line) and the vacuum solution
(dotted blue line). Here we set A ¼ 10. The solid black line is the
singularity a ¼ 1=

ffiffiffi
3

p
.

1λ ¼ 2=3 is a limiting case that we will refrain from discussing
here.

2This is an important starting point because we have to be sure
that the conventional fluids are enough to describe the observa-
tional data.

3Data collected from Ref. [9].
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Expressions (49)–(51) represent true perturbations of
the gravitational field, and they cannot be generated by
any coordinate transformation (see Appendix A). Thus,
we refrain here to use the ideas and the full arsenal of
gauge invariant perturbation theory [10,11] (adapted to the
present case).
Indices are lowered according to the relation

δqαβ ¼ −qαμqβνδqμν;

this provides the perturbed line element as follows:

ds2 ¼ ðqμν þ δqμνÞdxμdxν

¼
�
1þ 4α

α − 3
δΦ

�ðdx0Þ
αþ β

2

−
2β

ðαþ βÞα
δΦ;i

Φ;0
dx0dxi

−
1

α
ð1þ 2δΦÞδijdxidxj: ð52Þ

Use of the cosmic time t gives

ds2 ¼
�
1 −

4δΦ
3a2 − 1

�
dt2 − a2ð1þ 2δΦÞδijdxidxj

−
ða2 − 1Þð9a2 − 1Þ

2a2H
δΦ;idxidt; ð53Þ

where H ¼ _Φ is the Hubble parameter.

A. Perturbation of the dynamics

A little calculation shows that the perturbation of the lhs
of the field equation (6) is

δð
ffiffiffiffi
V

p
□ΦÞ ¼ a

2
ð3a2 − 1Þδ̈Φþ _að9a2 − 2Þ _δΦ

−
ð3a2 − 1Þ3

8a3
ΔδΦ

þ
�
3κχ0

�
3a2 þ 1

3a2 − 1

�
−

6a _a2

3a2 − 1

�
δΦ: ð54Þ

where Δ ¼ δij∂i∂j is the ordinary Laplace operator and χ0
is the rhs of the background field equation [see Eq. (27)].
Let us consider the rhs. The unperturbed energy-momen-

tum tensor is that of a perfect fluid,

Tμ
ν ¼ ðρþ pÞvμvν − pδμν ;

in the comoving coordinates [i.e. with four-velocity
vμ ¼ ð1; 0; 0; 0Þ]. As for the perturbed fluid the constraint

δðvμvμÞ ¼ 0 ⇒ δvt ¼ −
1

2
δqtt

gives

δTt
t ¼ δρ; ð55Þ

δTt
i ¼ ðρþ pÞδvi; ð56Þ

δTi
t ¼ ðρþ pÞδvi; ð57Þ

δTi
j ¼ −δpδij: ð58Þ

I follows that δT ¼ δρ − 3δp and δE ¼ δρ. The perturba-
tion of the vector Cμ is given by

δCμ ¼
β

αH2
½HδTt

μ − δρΦ;μ þ ðρþ pÞðvμvν − δνμÞδΦ;ν �:

In components, δCt ¼ 0 and

δCi ¼
β

αH2
ðρþ pÞð _Φδvi − δ _Φ;iÞ:

Since Cμ is zero on the background δCμ ¼ qμνδCν and then
δCt ¼ 0 and δCi ¼ −ð1=a2ÞδijδCj. Finally, the perturba-
tion of Cμ

;μ is

δðCμ
;μÞ ¼ ðδCμÞ;μ ¼

β

H2
ðρþ pÞ½Hδijδvi;j − ΔδΦ�: ð59Þ

The energy-momentum conservation equation gives rise to
the perturbed continuity equation

_δρþ _ρδvt þ ð1þ λÞðΘδρþ ρδΘÞ ¼ 0 ð60Þ

and the perturbed Euler equation4

ðρþ pÞð _δvi − δΓ0
i0 − Γ0

ijδv
j − Γj

i0δvjÞ − δp;i þ _pδvi ¼ 0;

ð61Þ

where as usual Θ ¼ vμ;μ is the unperturbed expansion
factor. Some auxiliary expressions useful to simplify this
equation are

δΓt
tt ¼ ð1=2Þ _δqtt;

δΓt
it ¼ ð1=2Þðδqtjqij;t þ δqtt;iÞ;

δvi ¼ a−2ðδqti − δviÞ:

In the end we have four variables (δρ and δvi) and four
equations which together with the equation for δΦ yield a
closed dynamical system. It should be remarked that if
more general forms of matter are taken into account (with
heat flux or anisotropic pressure components), then the
system is not closed anymore assuming only the evolution
of the scalar field, the conservation of the energy momen-
tum tensor and the evolution of their perturbations. Similar

4In the perturbation applied to GR, this equation does not
appear explicitly because it is a consequence of the constraint
equation Gt

i ¼ −Tt
i.
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to GR, some constitutive equations for the dissipative terms
should be added to those. Nevertheless, this dynamical
system will hardly be overdetermined, since there is no
constraint equation for the scalar field in GSG cosmology.
We trade as usual δρ for the contrast density δ ¼ δρ=ρ

and also using the continuity equation of the background
we get

_δ − ð1þ λÞðΘδvt − δΘÞ ¼ 0: ð62Þ
The perturbation of the expansion coefficient is given by

δΘ ¼ 3 _δΦþ Θδvt þ δvi;i; ð63Þ
where we have used

δð ffiffiffiffiffiffi
−q

p Þ ¼ ffiffiffiffiffiffi
−q

p �
9a2 − 5

3a2 − 1

�
δΦ:

B. Eigenfunction expansion

We now expand the perturbation in a complete set of
eigenfunctions of the Laplace operator

ΔQ ¼ −k2Q;

in our flat 3-geometry they are simply plane waves. This
amounts to make a spatial Fourier analysis of the pertur-
bations. The coefficients only depend on time. The coef-
ficients of the k modes are as follows:

δΦ → δΦkðtÞQkðxÞ; δ → δkðtÞQkðxÞ;
δvi → VkðtÞQk;iðxÞ:

For simplicity the index k will be omitted. There follows a
system of three coupled linear ordinary differential
equations:

δ̈Φþ 2H
ð9a2 − 2Þ
ð3a2 − 1Þ

_δΦ

þ
�
6κ

χ0
a

ð3a2 þ 1Þ
ð3a2 − 1Þ2 −

12a2H
ð3a2 − 1Þ2 þ

ð3a2 − 1Þ2k2
4a4

�
δΦ

¼ κρ0a−ð4þ3λÞ

ð3a2 − 1Þ
�

2δ

3a2 − 1
þ 3λδ −

12a2δΦ
ð3a2 − 1Þ2

− ð1þ λÞ ða
2 − 1Þð9a2 − 1Þ

4a4H2
ðHV − δΦÞk2

�
; ð64Þ

_V þ 2δΦ
3a2 − 1

−
λδ

1þ λ
− 3λHV ¼ 0; ð65Þ

_δþ ð1þ λÞ
�
3 _δΦþ

�ða2 − 1Þð9a2 − 1Þ
4a4H

δΦþ V
a2

�
k2
�
¼ 0:

ð66Þ

Now the question is whether the behavior of the perturba-
tions is compatible with the possibility of structure for-
mation in GSG cosmology. To proceed, the explicit time
dependence of the background scale factor is needed. In
the present situation aðtÞ is known analytically only
in the decelerated phase. We limit our investigation to that
case. The analysis is simplified by the use of the
conformal time dη ¼ dt=aðtÞ. Then, at late times (ρ0
small and a ≈ b

ffiffiffi
η

p ≫ 1), Eq. (64) is considerably sim-
plified resulting in

δΦ00 þ 5

2η
δΦ0 þ 9b2

4
k2ηδΦ ¼ 0: ð67Þ

In this crude approximation the evolution of δΦ depends
neither on the matter content nor on its perturbations. The
general solution is a damped oscillation

δΦ ¼ δΦ0 sinðkbη3
2Þ

η
3
2

; ð68Þ

where δΦ0 is an integration constant.
The simplified equations for the velocity perturbation

and the density contrast depend explicitly on the equation
of state,

V 0 þ 2δΦ
3b

ffiffiffi
η

p −
λb

ffiffiffi
η

p
1þ λ

δ −
3λ

2η
V ¼ 0; ð69Þ

δ0 þ ð1þ λÞ
�
3δΦ0 þ

�
9b2η2

2
δΦþ V

b
ffiffiffi
η

p
�
k2
�

¼ 0. ð70Þ

They can be solved analytically in terms of special
functions. In the case of dust, we get

V ¼ V0 −
2

3b
δΦ0

Z
η−2 sinðkbη3

2Þdη ð71Þ

and

δ ¼ δ0 −
2k2V0

ffiffiffi
η

p
b

þ 3kδΦ0 cosðkbη3
2Þ

þ 9

2
δΦ0

Z �
4k2

27a2η
ffiffiffi
η

p
Z

η sinðkbη̄3
2Þ

η̄2
dη̄

þ sinðkbη3
2Þ

η
5
2

−
kb
η
cosðkbη3

2Þ
�
dη; ð72Þ

where V0 and δ0 are integration constants.
At large scales (kη ≪ 1), the perturbation of the scalar

field remains constant δΦ ¼ δΦiðkÞ and the velocity
perturbation grows like V ≈ aðηÞδΦi. The growth of the
density contrast depends on the constant part of the velocity
perturbation

δ ≈ δ0 − V0aðηÞ: ð73Þ
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At small scales (kη ≫ 1), δΦ has a rapidly decreasing
oscillatory behavior and the velocity perturbation remains
almost constant with a small oscillation given by the second
term on the rhs of (71). On the other hand, the density
perturbation grows as follows:

δ ≈
�
k2C
3b3

δΦ0 −
2k2V0

b2

�
aðηÞ; ð74Þ

where CðηÞ≡ R
η η̄

−2 sinðkaηη̄3
2Þdη̄, which has a constant

amplitude with a very small oscillation (cf. Fig. 3). The
other terms of Eq. (72) do not contribute in this regime.
The almost empty late time phase of the universe is

preceded by a phase that we may try to model phenom-
enologically as a power law aðηÞ ¼ aηηm, where m > 1=2
is expected to depend on the equation of state. The
equations for the perturbations are

δΦ00 þ 5m
η

δΦ0 þ 9a2η
4

k2η2mδΦ ¼ 0; ð75Þ

V 0 þ 2δΦ
3aηηm

−
aηηm

4
δ −

m
η
V ¼ 0; ð76Þ

δ0 þ 4δΦ0 þ
�
3a2ηη2mþ1

m
δΦþ 4V

3aηηm

�
k2 ¼ 0; ð77Þ

where again we are neglecting the contribution from the rhs
of Eq. (64). Setting the integration constant of the decaying
mode of δΦ equal to zero, the finite contribution is

δΦ ¼ δΦ0η
1−5m
2 Jν

�
3kaηηmþ1

2ðmþ 1Þ
�
; ð78Þ

where δΦ0 is an integration constant and JνðxÞ is a Bessel
function of the first kind with ν ¼ ð5m − 1Þ=ð2mþ 2Þ. As
in the previous case, at large scales δΦ ¼ δΦiðkÞ while at
small scales δΦ has a decreasing oscillatory behavior with
power η−3m.
Eliminating V from Eq. (77), we get the following

nonlinear expression for the density contrast:

δ ¼ δ0 − 4δΦ −
3a2ηk2

m

Z
η2mþ1δΦdη

þ k2
Z Z �

8

9a2η

δΦ
η̄2m

−
δðη̄Þ
3

�
dη̄dη ¼ 0: ð79Þ

For kη ≪ 1, we may neglect all the terms proportional to k2

and find that δ ≈ −4δΦi. Using the formula to compute δ
recursively, we can neglect δðη̄Þ in the first approximation
and see the contribution of the other terms, which is

δ ∝ δΦ0Dk2η; ð80Þ

where DðxÞ≡ R
x x̄

−5m cosðx̄mþ1Þdx̄ (see its behavior in
Fig. 4) and x is equal to the Bessel function’s argument in
Eq. (78). It should be remarked that at small scales, D is
practically constant and its integration yields the growing
mode for δ whose rate comparable to aðηÞ will depend
specifically on the value of m.

FIG. 3 (color online). Illustrative plot of CðηÞ when k ¼ 1.
For large η, note that C tends to a nonzero constant. So, in general,
this yields the growing mode of δ when integrated in η.

FIG. 4 (color online). Illustrative plot of DðxÞ when m ¼ 3=4.
In comparison to CðηÞ, the behavior is analog. This also provides
the growing mode for δ when integrated in time.
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VII. CONCLUSION

We have discussed cosmology within the context of GSG.
The cosmological models have interesting features distinct
from those of the corresponding FRW cosmologies. In
particular, there is a nonzero special value for the scale factor
which cannot be attained by any solution. This fact is
responsible for the bounce in the big universes and the
recollapse in the small universes. Some of the main problem-
atic features of the standard cosmological scenario such as
the singularity, horizon and flatness problems, can be solved
in GSG without making appeal to exotic kinds of matter.
We have also discussed scalar perturbations focusing on

the growth of density perturbations in a matter dominated
decelerated phase that takes place after an early accelerated
phase of the universe and have seen that gravitational
instabilities are possible in GSG. Fortunately, they are
slightly different from GR, which means that the GSG
cosmology can be tested separately if we interpret properly
the data in this new framework. This is left for future work.
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APPENDIX A: GAUGE TRANSFORMATIONS
IN GSG COSMOLOGY

In this appendix we show that the first order perturba-
tions of the scalar field described in Section VI give rise to
true perturbations of the gravitational metric which cannot
arise from infinitesimal coordinate transformations (also
known as gauge transformations)

xα → ~xα ¼ xα þ ξα; ðA1Þ

where ξα is a “small” space-time displacement. To verify
the above assertion one has to compare the perturbed metric
(53) with the gauge transformed metric

qμν þ δqμν ¼ qμν − qμν;γξγ − qμγξ
γ
;ν − qγνξ

γ
;μ; ðA2Þ

taking into account that the scalar field transforms under
coordinate transformations as follows:

δΦ ¼ ~ΦðxÞ − ΦðxÞ ¼ −ξαΦ;α ¼ −Hξt: ðA3Þ

Equations (A2) and (A3) imply the following relations:

ðδΦ=HÞ·
δΦ=H

¼ −
2

3a2 − 1
H; ðA4Þ

_ξi ¼ −
ð3a2 − 1Þ
4a4H

2

δΦ;i; ðA5Þ

ξi;j þ ξj;i ¼ 0: ðA6Þ

The first equation gives the time dependence of the
perturbations generated by ξμ,

δΦðt; ~xÞ ¼ a2H
3a2 − 1

egð~xÞ; ðA7Þ

where gð~xÞ is an arbitrary function of the spatial coordinates.
Substituting this into Eqs. (A5) and (A6) we can obtain the
spatial components of ξμ. However, a straightforward
calculation shows that the time dependence of δΦ given
in (A7) is incompatible with Eqs. (64)–(66). Therefore a
solution of such equations cannot be a gauge artifact.
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