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Abstract. We study here some consequences of the nonlinearities of the electromagnetic field
acting as a source of Einstein’s equations on the propagation of photons. We restrict to the particular
case of a ‘regular black hole’, and show that there exist singularities in the effective geometry. These
singularities may be hidden behind a horizon or be naked, according to the value of a parameter.
Some unusual properties of this solution are also analysed.

PACS numbers: 0420D, 0420J

1. Introduction

It is a well known fact that some of the most important solutions of Einstein’s field
equations (e.g. Friedmann–Robertson–Walker and Schwarzschild) are singular. However, our
understanding of the nature of these singularities is still incomplete. For instance, the cosmic
censorship conjecture was put forward by Penrose in 1969 [1], but there is still no general proof
of it. As a consequence of this lack of understanding, solutions that are everywhere regular and
share some of the properties of singular solutions deserve attention. This is precisely the case of
the ‘regular black hole’ spacetimes recently exhibited in [2–4]. These solutions were obtained
for a very special type of source: an electric field that obeys a nonlinear electrodynamics. The
authors of [2] analysed some of the features of the solution, but left aside others that are relevant.
We shall re-examine this solution in detail. More importantly, we shall show in this particular
example the far-reaching consequences of the fact that in nonlinear electromagnetism photons
do not propagate along null geodesics of the background geometry. They propagate instead
along null geodesics of an effective geometry, which depends on the nonlinearities of the theory.
This result, derived by Plebańsky for Born–Infeld electrodynamics [5], was generalized for
any nonlinear theory by Gutiérrez et al [6], and later independently rediscovered by Novello
et al [7]. Let us mention that the propagation of photons beyond Maxwell electrodynamics
has been studied in several different situations. It has been investigated in curved spacetime,
as a consequence of non-minimal coupling of electrodynamics with gravity [8–10], and in
non-trivial QED vacua as an effective modification induced by quantum fluctuations [11–13].
Nearly always, these analysis have had some unexpected results. As an example, let us mention
the possibility of faster and slower-than-light photons [11].

Our main concern in this paper will be then to show that one must consider the
modifications on the trajectories of the photons induced by the nonlinearities of the
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electromagnetic theory in order to give a complete characterization of spacetimes with a
nonlinear electromagnetic source. The structure of the paper is the following. A summary
of the solution given in [2] and the properties studied there will be given in section 2, along
with some interesting properties that went unnoticed before. In section 3 we briefly review
the origin of the effective geometry for photons in nonlinear electrodynamics. In section 4
we shall use the method of the effective geometry to study the features of the structure that
photons see when travelling in the geometry given in [2]. We close with some conclusions.

2. Details of the solution

Ayón-Beato and Garcı́a [2] have found an exact solution of Einstein’s equations in the presence
of a nonlinear electromagnetic source. The relevant equations are derived from the action [14]

S =
∫

d4x

[
1

16π
R − 1

4π
L(F )

]
, (1)

whereR is the curvature scalar and L is a nonlinear function ofF ≡ 1
4FµνF

µν . Following [2, 5]
this system could also be described using another function obtained by means of a Legendre
transformation:

H ≡ 2FLF − L. (2)

(LF denotes the derivative of L with respect to F .) With the definition

Pµν ≡ LFFµν, (3)

it can be shown that H is a function of P ≡ 1
4PµνP

µν = (LF )
2F , i.e. dH =

(LF )
−1 d((LF )

2F) = HP dP . With the help of H one could express the nonlinear
electromagnetic Lagrangian in the action (1) as L = 2PHP − H, which depends on
the antisymmetric tensor Pµν . The solution of Einstein’s equations coupled to nonlinear
electrodynamics obtained in [2] was derived from the following source:

H(P ) = P

(
1 − 3

√
−2q2P

)
(
1 +

√
−2q2P

)3 − 3

2q2s

( √
−2q2P

1 +
√

−2q2P

)5/2

, (4)

where s = |q|/2m and the invariant P is a negative quantity. The corresponding Lagrangian
is given by

L = P

(
1 − 8

√
−2q2P − 6q2P

)
(
1 +

√
−2q2P

)4 − 3

4q2s

(−2q2P)5/4
(
3 − 2

√
−2q2P

)
(
1 +

√
−2q2P

)7/2 . (5)

From equation (1) we obtain the following equations of motion:

Gµ
ν = 2(HPPµλP

νλ − δµ
ν(2PHP − H)), (6)

∇µP
αµ = 0. (7)

This system was solved in [2], and the explicit form of the solution is the following:

ds2 =
[

1 − 2mr2

(r2 + q2)3/2
+

q2r2

(r2 + q2)2

]
dt2

−
[

1 − 2mr2

(r2 + q2)3/2
+

q2r2

(r2 + q2)2

]−1

dr2 − r2 d�2, (8)

Er = qr4

[
r2 − 5q2

(r2 + q2)4
+

15

2

m

(r2 + q2)7/2

]
. (9)
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Figure 1. Electric field times the electric charge q as a function of x for different values of s.

By means of the substitution x = r/|q| we can rewrite gtt and Er as follows:

gtt = A(x, s) ≡ 1 − 1

s

x2

(1 + x2)3/2
+

x2

(1 + x2)2
(10)

Er = x4

q

[
x2 − 5

(x2 + 1)4
+

15

4s

1

(x2 + 1)7/2

]
. (11)

The result of the analysis made in [2] is that this metric describes a regular black hole. The
position of the horizons was identified there with the values of the coordinate x for which gtt
is zero. These are given by

s = x2
√
x2 + 1

x4 + 3x2 + 1
. (12)

Accordingly, the solution has two horizons (for 0 < s < 0.317), one horizon (for s = 0.317),
or no horizons (for s > 0.317). It was also stated that this solution is regular, on the basis of
the finiteness of the three invariants R, RµνR

µν and RµναβR
µναβ†.

Let us point out now some features of the solution described by equations (10) and (11)
that were not noticed in [2]. First, the behaviour of the radial component of the electric field
depends on the value of s. Specifically, Er may have a zero; its position is given by

s = −15

4

√
x2 + 1

x2 − 5
. (13)

Consequently, Er does not have zeros for 0 < s < 3
4 . For s � 3

4 , Er has one zero located in the
interval (0,

√
5) of the coordinate x. These features of the electric field are depicted in figure 1‡.

† We have checked that all the components of RABCD and CABCD with respect to a static observer are finite at r = 0.
‡ The plots in this paper have been made with gnuplot [15].
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Figure 2. Energy density of the electric field times q2 as a function of x for different values of s.

Another salient feature of Er is that its energy density, calculated as the Gt
t component of the

Einstein tensor†, may be negative for some interval of x. In fact, the expression

Gt
t = ρ = 1

sq2

s
√

1 + x2 (x2 − 3) + 3(x2 + 1)

(1 + x2)7/2
(14)

is zero for

s = −3

√
1 + x2

x2 − 3
. (15)

For s < 1, the energy is always positive, but for s � 1 it has a zero given by equation (15).
Figure 2 illustrates the situation.

3. Effective geometry for photons

In this section we give a summary of the method of the effective geometry [7]. We will deal
here only with the case in which the Lagrangian of the nonlinear electromagnetic theory is
a function of F only. The general case in which L also depends on G = 1

2F
µνηαβµνFαβ is

analysed in [7]. Based on the framework introduced by Hadamard [17], Novello et al showed
that the discontinuities of the electromagnetic field propagate according to the equation

(LF η
µν − 4LFFF

µαFα
ν) kµkν = 0, (16)

† This and other calculations in this paper were done with the package Riemann [16].
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where ηµν is the (flat) background metric and kµ is the propagation vector. This expression
suggests that the self-interaction of the field Fµν can be interpreted as a modification on the
spacetime metric ηµν , leading to the effective geometry

g
µν

(eff) = LF η
µν − 4LFFF

µ
αF

αν. (17)

Note that only in the particular case of linear Maxwell electrodynamics the discontinuities of
the electromagnetic field propagate along the null cones of the Minkowskian background.

The general expression of the effective geometry can be equivalently written in terms of
the energy–momentum tensor, given by

Tµν ≡ 2√−γ

δ%

δγ µν
, (18)

where % is the effective action

%
.=

∫
d4x

√−γL, (19)

and γµν is the Minkowski metric written in an arbitrary coordinate system; γ is the
corresponding determinant. In the case of one-parameter Lagrangians, L = L(F ), we obtain

Tµν = −4LFFµ
αFαν − Lηµν, (20)

where we have chosen a Cartesian coordinate system in which γµν reduces to ηµν . In terms of
this tensor the effective geometry (17) can be rewritten as

g
µν

(eff) =
(

LF +
LLFF

LF

)
ηµν +

LFF

LF

T µν. (21)

It is shown in [7] that the field discontinuities propagate along the null geodesics of the
effective geometry given by equation (21). This equation explicitly shows that the stress–
energy distribution of the field is responsible for the deviation of the geometry felt by photons
from its Minkowskian form†.

We will now show that the modification of the underlying spacetime geometry seen by
photons due to nonlinear electrodynamics can also be described as if photons governed by
Maxwell electrodynamics were propagating inside a dielectric medium. In this case, the
electromagnetic field is represented by two antisymmetric tensors, the electromagnetic field
Fµν and the polarization field Pµν . For electrostatic fields inside isotropic dielectrics it follows
that Pµν and Fµν are related by

Pµν = ε(E)Fµν (22)

where ε is the electric susceptibility. Comparing with equation (3) we see that we can make
the identification

LF −→ ε, (23)

which implies

LFF −→ − ε’

4E
, (24)

in which ε′ ≡ dε/dE and E2 ≡ −EαE
α > 0. Therefore, every Lagrangian L = L(F )

which describes a nonlinear electromagnetic theory may be used as a convenient description
of Maxwell theory inside isotropic nonlinear dielectric media. Conversely, results obtained

† For Tµν = 0, the conformal modification in (21) clearly leaves the photon paths unchanged.
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in the latter context can be restated in terms of Lagrangians of nonlinear theories. Using this
equivalence, the effective geometry can be rewritten as

g
µν

(eff) = εηµν − ε’

E

(
EµEν − E2δ

µ
t δ

ν
t

)
. (25)

In other words,

gtt(eff) = ε + ε′E, (26)

g
ij

(eff) = −εδij − ε′

E
EiEj . (27)

This shows that the discontinuities of the electromagnetic field inside a nonlinear dielectric
medium propagate along null cones of an effective geometry (given by equation (25)) which
depends on the characteristics of the medium.

Although in [7] the background was flat, the method can also be used in a curved
background. The reason is that the equations given in [7] are valid locally in any curved
spacetime. Then from the equivalence principle it follows that the only change in equation (17)
is that of ηµν by gµν .

4. Analysis of the ‘regular black hole’

Using equations (26) and (27) it follows that the effective metric associated with a spherically
symmetric solution of Einstein’s equations is given by

ds2 = 1

*(r)

[
A(r) dt2 − A(r)−1 dr2

] − r2

LF

d�2, (28)

where

* = ε +
dε

dEr

Er = −2q

r3

1

dEr/dr
(29)

and

ε = 1

Er

√
−PµνPµν

2
. (30)

For the case dealt with in the previous section, the function * takes the form

*(x, s) = 8(x2 + 1)5s

x6(8x4s − 104sx2 + 80s + 45x2
√
x2 + 1 − 60

√
x2 + 1)

. (31)

From equation (28) we see that the t t coefficient of the effective metric is given by the quotient
g
(eff)
tt = A/*. The function *−1 has real zeros for

s = −15

8

√
x2 + 1 (3x2 − 4)

x4 − 13x2 + 10
. (32)

Taking into account that s must be positive, we conclude from equation (32) that the function
*−1 has one zero for s < 3

4 and two zeros for s � 3
4 . In both cases the zeros are in the interval

(0, 3.49) of the coordinate x.
It was shown in [2] that the metric coefficient gtt given by equation (10) has two zeros

for s < 0.317, one zero for s = 0.317 and no zeros for s > 0.317. The zeros in gtt were
identified in [2] with horizons. We see that due to the effective metric, the geometry seen by
the photons is more complex than the geometry seen by ordinary matter. Taking into account
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Figure 3. Effective potential Veff/E
2
0 for s = 0.2 and different values of the impact parameter

b = h0/E0.

the zeros of A and those of *−1 we conclude that g(eff)
tt has three zeros for s < 0.371, two

zeros for s = 0.371, one zero for 0.317 < s < 3
4 , and again two zeros for s � 3

4 .
To determine the nature of the new zeros in the metric, it is useful to study the effective

potential that is felt by the photons. The symmetries of the metric imply that there are two
Killing vectors and consequently, two conserved quantities:

E0 = gtt ṫ and h0 = r2

LF

φ̇ (33)

(the overdot denotes a derivative with respect to the affine parameter). Standard calculations
(see, for instance, [18]) using g(eff)

µν show that the effective potential for photons is given by

Veff = (1 − *2)
E2

0

2
+
h2

0

x2
LFA*. (34)

The explicit form of the effective potential is too involved to be displayed here. However, we
note that Veff has poles. One of them is at x = 0, and the others are given by the expression of
the poles of * (see equation (32)), and those of LF which are given by equation (13). LF has
no poles for 0 < s < 3

4 , and one pole for s � 3
4 . Leaving aside the pole at x = 0, it follows

that for s < 3
4 , the effective potential has only one pole, and for s � 3

4 , it has three poles.
Those that originate in the singularities of the function * are in agreement with the extrema of
the electric field, as shown by equation (31). We give in figures 3–5 plots of Veff for different
values of the relevant parameters.

Several comments are in order. The singularities in the potential suggest that the effective
geometry itself may be singular. This is confirmed by the expression of the scalar curvature
R(eff), which diverges in the values of x given by equations (13) and (32). Let us analyse the
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Figure 4. Effective potential Veff/E
2
0 for s = 4 and different values of b. The interval

1.7 � x � 1.8 is shown in detail in figure 5.

Figure 5. Effective potential Veff/E
2
0 for s = 4 and different values of b. The singularity seen in

this plot comes from the pole of LF .
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Figure 6. Positions of the zeros of the metric and spacetime singularities for a given s.

relative positions of these singularities felt by the photons and those of the metric coefficient
gtt (x, s), given by equation (12). The information is conveniently summarized in figure 6.

We see that for a fixed s � 0.317 the singularities are situated inside the first horizon.
However, for s > 0.317 the singularities are no longer hidden behind a horizon: we are then
in the presence of naked singularities. We must remark that these singularities are only felt by
photons. The rest of the matter follows the geodesics of the regular spacetime given in [2].

It can also be seen from the plot that for s < 0.371 the coordinate distance between the
two horizons decreases for increasing s, up to s = 0.371, where the two horizons coalesce.

Before analysing the path of a photon coming from infinity, let us remark that there is a
low potential barrier extending to the right of the outermost singularity for any value of the
parameters. This barrier can be seen in figure 3, and it is also present to the right of figure 4.
A low-energy photon incident from the right will then find this barrier, and will be deflected
back to large values of x. This deflection will be more pronounced with increasing energy.
When the energy of the photon is approximately that of the height of the barrier, the photon
can orbit around the centre of the field in an unstable orbit. Finally, an incident photon with
energy greater than the height of the barrier will inevitably encounter the first singularity.

It is easily seen from equation (34) that the potential goes to zero for large values of x. We
have also analysed the effective potential for the case of a negative q, but the only quantitatively
different result is a small increment of the innermost local maximum seen in figures 3 and 4.

We now move to another peculiar feature of the effective geometry. It is known that the
effective potential for the Schwarzschild and Reissner–Nordström geometries is null in the
case of photons with h0 = 0. However, from equation (34) we see that in this case Veff for the
effective geometry reduces to

Veff = (1 − *2)E2
0 . (35)
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The dependence of this potential on * is the same as in equation (34), so the behaviour of Veff

with x in this case is qualitatively depicted in figures 3 and 4.
Let us finally point out some unusual geometrical properties of the metric seen by the

photons. The effective metric has the same symmetries as the original metric given by
equation (8). It can be easily shown that the time Killing vector ∂/∂t is null on the hypersurfaces
determined by the zeros of g(eff)

tt .
Another interesting property of these surfaces is associated with the redshift of the photons.

The redshift z of a source as measured by an observer with velocity uµ can be defined in terms
of the frequency by

1 + z = (uµkµ)emitter

(uµkµ)observer
. (36)

Considering a static observer for which uµ = δ
µ

0 /
√
gtt this expression can be written as

1 + z =
[√

gtt

g
(eff)
tt

]
em

[
g
(eff)
tt√
gtt

]
obs

. (37)

Using the expression of the effective metric, and if the observer is at infinity,

1 + z = *√
A
. (38)

We conclude then that the redshift diverges in two cases: when A is zero, and when * diverges
(see figure 6).

5. Conclusion

The remarkable fact that in nonlinear electrodynamics the trajectories of photons are modified
by the nonlinearities of the field equations has not been addressed frequently in the literature.
The photons do not propagate following the null cones of the background metric but those of
the effective metric. We have shown here the dramatic consequences that this has in a so-called
regular black hole. In this case, there are singularities that are seen only by the photons. These
singularities can either be hidden behind a horizon or naked, according to the value of the ratio
q/2m. Let us remark that the existence of singularities in these types of solutions is a direct
consequence of the existence of extrema of the electric field, as equation (29) shows. This is a
general property which will always be present in any static and spherically symmetric solution
of the system of equations (6) and (7) when the electromagnetic theory is nonlinear.

We have also shown that the effective potential to the right of the outermost singularity
resembles that of Schwarzschild and Reissner–Nordström. However, contrary to what happens
in Maxwell theory, photons with zero angular momentum travel under the influence of an
effective potential that is different from zero.

We have also exhibited some unusual properties of the solution found in [2]. The electric
field may have one or two extrema depending on the value of s. In the second case, it has a
zero. Also, for certain values of s the energy of the electric field is negative in some coordinate
range. There are at least two more properties, geometrical in origin, that are worthy of note.
First, the time Killing vector of the effective geometry is null in the surfaces where the function
* diverges. Second, the redshift measured by an observer far from the source diverges on the
same surfaces. It is important to remark that these geometrical properties will be present in
every solution with the same symmetries if the electric field has extrema.

To close, we would like to emphasize that ordinary matter follows geodesics of the
background metric. However, the modifications of the metric induced by the nonlinearities of
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the electromagnetic field must always be taken into account when studying the propagation of
photons. The above-mentioned properties are nothing but a consequence of the nonlinearities
of the electromagnetic theory.
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