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Abstract
Propagation of light in nonlinear materials is here studied in the regime of the
geometrical optics. It is shown that a spherically symmetric medium at rest
with some specific dielectric properties can be used to produce an exact
analogue model for a class of space-times which includes spherically sym-
metric and static black hole solutions. The optical model here presented can be
a useful tool to reproduce in laboratory the behavior of optical null geodesics
near a compact object with an observable gravitational Schwarzschild radius.

Keywords: black hole, nonlinear electrodynamics, analogue model
PACS numbers: 04.20.Cv, 04.20.-q, 11.10.Lm, 42.15.Dp.

(Some figures may appear in colour only in the online journal)

1. Introduction

Analogue models of general relativity have long ago been considered in the literature. This
theme was introduced by Gordon in 1923 [1] when an effective geometric interpretation for
light propagation in homogeneous dielectrics was proposed. In the following six decades few
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works on this theme were published (for a review, see [2–5]). However, this research area was
warmed up in the 80s with the proposal of a hydrodynamic analogue model of a black hole by
Unruh [6]. Since then, lot of other models were proposed and their consequences investigated.
For a review, see [7] and references therein. The main expectation is that some tiny effects
predicted to occur in the realm of semiclassical gravity could be tested in such analogous to
general relativity systems. Of particular interest is the issue of Hawking radiation, which is
expected to occur whenever an event horizon is brought forth in a physical system, although
some authors have different opinion [8]. Such effect was unveiled by Hawking in 1975 [9] as
a result of the quantization of fields in the spacetime of a black hole. This issue was recently
examined in laboratory by means of optic [10] and hydrodynamic [11] gravitational analogue
systems. In both cases Hawking-like radiation was reported to occur .

In the context of electrodynamics the most simple analogue model describing the pro-
pagation of light in a continuum media arises by considering constant dielectric coefficients ϵ
and μ, here called electric permittivity and magnetic permeability, respectively. In such case,
it can be shown that the paths of light are geodesic in an effective geometry given by

η μϵ= − −μν μν μ νg v v(1 ) , (1)

where ημν is the Minkowski metric and αv is the observerʼs geodesic four-velocity (assumed to
be normalized to unity by simplicity) with respect to which the material medium is at rest.
The above metric is known as the Gordon metric [1, 12]. More general results can be obtained
by allowing the dielectric coefficients to vary. In this case several models describing different
solutions of general relativity were obtained. For instance, almost axially symmetric optical
analogues of Schwarzschild black holes are already known [13–15]. For these models, the
occurrence of an event horizon is fundamentally dependent upon the vortical motion of the
dielectric fluid. A model that does not involve mechanical motion of the medium was already
presented [16] in the context of metamaterials, where an effective black hole solution was
proposed. The approach of the present work is closely related to the presentation by
Thompson and Frauendiener [17]. In this paper, we investigate further the possibility of
producing a material medium at rest with specific dielectric properties in such way that an
exact analogue model for Schwarzschild geometry becomes available. Particularly, the
behavior of light rays propagating in this medium is studied. We focus on the theoretical
aspects of the phenomenon. Experimental verification is already known in some tailored
media [18, 19].

The outline of the paper is as follows. In section 2, basic aspects of light propagation is
reviewed, including the derivation of the dispersion relations for nonlinear material media and
the corresponding effective optical metric interpretation. An optical model is presented in
section 3. Some kinematical aspects of the propagating optical wave modes in such model are
discussed in section 4, which justify calling it an optical analogue model of spherically
symmetric static black hole solutions. Concluding remarks are presented in section 5,
including a brief discussion about the issue of Hawking thermal radiation in this model. We
assume throughout this work that the physics takes place in the flat Minkowski space-time of
special relativity, which is described in a general coordinate system with metric γμν. Geo-
metrical units are chosen such that the speed of light in vacuum is c = 1. We define the
completely skew-symmetric pseudo-tensor ηαβμν such that η = 10123 when written in Cartesian
coordinates.
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2. The generalized Gordon optical metric

We briefly recall here the main steps [20] to achieve the optical metric description of the wave
propagation in material media in the limit of geometrical optics. Let αv be the observerʼs
geodesic four-velocity (assumed to be normalized to unity for simplicity), with respect to
which the material medium is at rest. Maxwell equations inside this medium in Minkowski
space-time can be written in covariant notation as

=β
αβ αP J , (2);

=*
β

αβ( )F 0, (3)
;

where * η η= = − +
αβ

ρσ
αβ ρσ α β β α

ρσ
αβ ρ σ( )F F v B v B v E/2 stands for the dual of the Maxwell field

strength tensor η= − −αβ α β β α
ρσ
αβ ρ σF v E v E v B , while the Faraday tensor

ε μ η= − −αβ α β β α
ρσ
αβ ρ σ( )P v E v E v B(1/ ) describes the field excitations. We assume that the

permittivity parameter ϵ ϵ= E( ) may be dependent upon the magnitude of the electric field
strength ≡ − α

αE E E , while the permeability parameter is momentarily being taken as the
vacuum constant μ μ=

0
.

The electromagnetic field strengths αE and αB are assumed both to be continuous but
with possibly non-zero finite Hadamard discontinuities [21] in their derivatives at the wave-
front hypersurface Σ , as

=α β
Σ

α β
⎡⎣ ⎤⎦E e k , (4),

=α β
Σ

α β
⎡⎣ ⎤⎦B b k , (5),

where Φ ω= ∂ = ⃗ = ˆβ β ( )( )k q q v q, ,ph is the wave vector (with a phase speed vph pointing
along the direction of the normalized vector q̂) orthogonal to Σ , while Σ is described as
Φ =α( )x 0. The two space-like vectors αe and αb respectively describe the polarizations of
the electric and magnetic components of the wave. The discontinuity of equations (2)–(3)
over Σ yields a linearly polarized wave η ω=α

ρσ
αβ

β
ρ σb k v e / , with the electric polarization αe

being obtained from the eigenvalue problem =β
α βZ e 0, where the generalized Fresnel matrix

is written in terms of the normalized vector ˆ =
α αl E E/ as

ϵ δ ϵ
μ

δ= − − ′ ˆ ˆ − − + ˆ ˆβ
α

β
α α

β
α

β β
α α

β
α

β( )( )Z v v El l
v

v v q q
1

, (6)
ph
2

where ϵ′ denotes the derivative of the function ϵ E( ) with respect to E. This relation was
written in terms of μ (instead of μ

0
) for latter convenience. The existence of non-trivial

eigenvectors ≠αe 0 then leads [1, 22, 23] to the two possible optical geometries

γ μϵ= − −αβ αβ α β
+g v v(1 ) , (7)

( )

γ μ ϵ ϵ ϵ
ϵ

= − − + ′ − ′ ˆ ˆαβ αβ α β α β

−g E v v
E

l l[1 ( ) ] , (8)
( )

such that the two wave vectors =λ λ
±k k ( ) satisfy the corresponding dispersion relations

=αβ
α β+

+ +g k k 0
( )

( ) ( ) and =αβ
α β−

− −g k k 0
( )

( ) ( ) . The former equation is equivalent to μϵω =+ +q( )
2

( )
2 , which

describes the isotropic propagation of the ordinary mode with speed μϵ=v 1/ph . The
effective optical geometry equation (7) is usually referred to as Gordon geometry .

Our interest here lies mostly in the so-called extraordinary mode, the optical geometry
equation (7), and thus we simply denote it as =αβ αβ

−g g
( )
. Assuming that the determinant of αβg

is non-zero, then a simple calculation [23] gives its inverse matrix as the effective metric
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γ
μ ϵ ϵ

ϵ
ϵ ϵ

= − −
+ ′

+ ′
+ ′

ˆ ˆ
αβ αβ α β α β

⎡
⎣⎢

⎤
⎦⎥g

E
v v

E

E
l l1

1

( )
. (9)

The results above can easily be generalized to include the case for which also the
permeability parameter has an arbitrary dependence upon the electric field strength as
μ μ= E( ). Indeed, the Fresnel matrix equation (6) and the two optical geometries
equations (7)–(8) can be shown [24] to hold good in this case as well, provided the magnetic
field ⃗B is zero. We will henceforth assume this condition to be satisfied. Let us now seek for
static spherically symmetric black hole analogue models to this effective optical metric.

3. Analogue spherical black holes

Let us consider a dielectric medium as above, with four-velocity δ=α αv 0 , subjected to an
electric field directed along the radial direction and no magnetic field. For the static spheri-
cally symmetric situation we are dealing with, the current four-vector ρ= ⃗μ ( )J J, presents
only its time component, the charge density ρ. Maxwell equations (2)–(3), written in flat
spherical coordinates θ ϕt r( , , , ) adapted to the dielectric medium, then reduce to

γ ϵ
γ

ρ
∂ −

−
=

( )E
, (10)r

where the determinant of the metric αβg is γ θ= − r sin4 2 as in the flat case. The effective
geometry equation (8) reads

μ ϵ ϵ ϵ ϵ
ϵ θ

= + ′ − + ′ − −αβ ⎜ ⎟⎛
⎝

⎞
⎠g E

E

r r
diag ( ), ,

1
,

1

sin
. (11)

2 2 2

This form allows one to seek for analogue spherically symmetric static black hole
solutions

θ
= − − −αβ ⎜ ⎟⎛

⎝
⎞
⎠g

A
A

r r
diag

1
, ,

1
,

1

sin
, (12)

2 2 2

where =A A r( ) is a given radial function such that = −A r R r( ) 1 / describes a
Schwarzschild black hole with a horizon at the Schwarzschild radius R. Equation (12)
includes all spherically symmetric black holes in a unified form, with the well-known
solutions of Einstein equations (such as Schwarzschild, Reissner–Nordström, de-Sitter or
combinations thereof) being characterized by the explicit form of the radial dependence of the
function A. The identification of equations (11) and (12) gives the two possible solutions

ϵ ϵ ϵ μ+ ′ = ±E . (13)

In order to integrate this equation, a two-parameter function μ μ ϵ= E( , ) can arbitrarily
be chosen. Among all possibilities, we restrict ourselves here (other possible choices are left
to the concluding discussions) to the mathematically convenient form

μ
ϵ
ϵ

= , (14)0
2

3

where ϵ0 is the vacuum permittivity constant (with μ ϵ = 1
0 0 ). Equation (13) then reads

ϵ ϵ ϵ′ = ±E( ) /2
0, whose integration immediately yields ϵ ϵ= ±, where
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ϵ
ϵ

=
±± 1

, (15)
E

E

0

0

and ϵ ϵ= ± = ±± ( )A r E E( ) / 1/ 1 /0 0 , where >E 00 is a constant of integration; for ϵ ϵ= +
one has =E E0 at =A 1/2 (i.e., at =r R2 for the Schwarzschild model), while the solution
ϵ ϵ= − is limited to >E E0 (since <E E0 would correspond to >A 1 in this case). The usual
range −∞ < <A 1 of an effective black hole can thus be obtained by joining the solution ϵ−
inside horizon with the solution ϵ+ outside horizon.

The expressions of the electric field E, the electric displacement ϵ=D E , and the charge
density ρ in terms of A then give

= ± −E

E

A

A

(1 )
, (16)

0

ϵ= −D E A(1 ), , (17)0 0

ρ ϵ= − −
⎡
⎣⎢

⎤
⎦⎥E

A

r

A

r

2 (1 ) d

d
, (18)0 0

which hold for either < <A0 1 or <A 0. In the case of a Schwarzschild analogue black
hole, these expressions reduce to = ± −E E R r R/( )0 with a quadratic charge density profile
ρ ϵ= E R r/0 0

2 and a linear electric displacement ϵ=D E R r/0 0 (note that ρ =D r/ 1/ in this
case). Therefore, E diverges at the horizon but remains finite everywhere else, while both D
and ρare finite at the horizon but they both diverge at the center (except for − ∼ −A r1 2,
which gives ρ = 0 everywhere). The inner solution should then be regularized near the
center. Our definite proposal to a spherically symmetric black hole analogue with radius R is
thus built with a medium whose permittivity is such that (see figure 1)

ϵ
ϵ

=

+
>

−
< <

<

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

E

E E
r R

E

E E
R r R

r R

, if ,

, if
1

2
,

1, if
1

2
.

(19)
0

0

0

0

0

When expressed in terms of the radial coordinate r, then equation (19) gives ϵ ϵ = | |A/ 0 , where
− < <A1 1. We can compare this result with previous similar proposals for the radial
behavior of a nonlinear dielectric medium at rest: for example, [16] which rely upon
postulating a core absorption coefficient; here, no doping is required, but only a variable
volumetric density of the medium. Moreover, as already noted [25], that was not a consistent
solution of Einstein field equations; this latter instead deals with the cylindric case, and
proposed a non-diagonal structure for both ϵ and μ, while we treat these two parameters both
as scalars.

4. Kinematics

The usefulness of the optical geometry equation (12) is to express the dispersion relation as
=αβ

α βg k k 0. Written in terms of the phase speed ω=v q/ph of the wave, we have
ω= + = + ˆλ λ λ λ λ( )k v q q v v qph , and then
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= + − ˆ · ˆ⎡
⎣⎢

⎤
⎦⎥( )v A A l q1 ( 1) . (20)ph

2
2

The phase velocity ⃗ = ˆv v qph ph and the group velocity ω⃗ = ⃗v qd /dgr are

⃗ = + − ˆ · ˆ ˆ( )v A A l q q1 ( 1) , (21)ph
12

2
12

⃗ =
+ − ˆ · ˆ

ˆ + − ˆ · ˆ ˆ⎡⎣ ⎤⎦
( )

( )v
A

A l q
q A l q l

1 ( 1)
( 1) . (22)gr 2

These two velocities coincide for each of the following three situations: ˆ · ˆ =l q 1,
ˆ · ˆ =l q 0, or ˆ · ˆ = −l q 1. For other directions q̂ of the phase velocity with respect to the
radial direction l̂ of the background electric field ⃗E , the two velocities ⃗vph and ⃗vgr given by
equations (21)–(22) lie along lines not parallel to one another. Let ψbe the angle between ⃗vgr

and ⃗vph. It then follows from equations (21)–(22) that

ψˆ · ˆ = −
−( )l q

A

1 cos

1
, (23)

2

which implies ψ ⩾ Acos . In particular, ψ >cos 0 outside the effective black hole (i.e., for the
region < <A0 1).

It should be remarked that both the phase and group velocities of this extraordinary mode
have a zero limit when approaching the regular distinguished closed surface A = 0, lacking
propagation of this wave mode across that surface.

For the ordinary mode, and taking into account the solution equation (15) for ϵ, we
obtain

Figure 1. The behavior of the dielectric coefficient ϵ and the electric field E are shown
in terms of the radial distance r. As stated by equation (19), three distinct media are
considered in this model: vacuum for < <r R0 0.5 , medium I for < <r R0.5 and
medium II for >r R. Notice that ϵ is a C 0 function at the horizon, while the electric
field diverges at this point. However, the observable field D is a regular function
through r = R. The dotted vertical line depicts the analogue event horizon.
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= =+ +v A v , (24)ph
( )

gr
( )

where A is the same radial function considered above in equation (12). Equation (24) states
that the ordinary mode λ

+k ( ) also cannot propagate across the surface A = 0. Therefore, this
surface plays the role of the effective event horizon of the above considered optical analogue
model of a black hole.

The arbitrary constant E0 can be eliminated from equations (17)–(18), thus yielding
ρ= − −A r A r Dd /d (1 ) (2/ / ), from which the standard definition of the surface gravity

parameter κ = →( )c A r/2 lim d /dr R
2 reads

κ ρ=
→

⎜ ⎟
⎛
⎝

⎞
⎠D

lim
2

. (25)
r R

Particularization of this result to the Schwarzschild model gives κ ρ= | ==D R[ /(2 ) ] 1/(2 )r R .
In order to have some estimates, suppose a dielectric probe with an optical Schwarzschild

radius of =R 10 cm. The total amount of electric charge in the volume delimited by the
radius R/2 and R2 of the dielectric would be of the order ∼ −Q 10 C6 , while the electric field
scale E0 is given by πϵ= ≈ × −E Q R/6 6.0 10 V m0 0

2 5 1. The charge density in this region of
radial distances thus ranges between ρ ϵ= ≈ × − −E R/4 1.33 10 C m

min 0 0
5 3 and

ρ ϵ= ≈ × − −E R4 / 2.12 10 C m
max 0 0

4 3. For the sake of comparison, the above values are
similar to the ones we can find in usual electronic capacitors with capacitance ranging around
1– μ50 F and providing an electrostatic potential of 1 V. From the regularity of the physical
properties mentioned above, we see that the proposed dielectric media can reproduce in
laboratory all the classical behavior of optical null geodesics near a compact object with a
gravitational Schwarzschild radius equal to R.

5. Conclusion

Suppose a static spherically symmetric dielectric medium with electric charge density ρgiven
by equation (18), while its dielectric parameters ϵ and μ are real quantities (that is, with no
‘by-hand’ absorption) which behave nonlinearly according with equations (14) and (19).
Maxwell equations then yield no magnetic field and a radial electric field given by
equation (16). With such electromagnetic background fields, small electromagnetic field
disturbances propagate as two linearly polarized wave modes. The extraordinary one amongst
these two modes behaves exactly as a null wave of the black hole analogue geometry
equation (12). The ordinary mode propagates differently, but in such a way as to avoid
propagation across the same analogue event horizon. Thus, no electromagnetic field dis-
turbance can propagate from the inner region of the analogue black hole to the region outside
from it.

As well known, quantization of fields on the classical Schwarzschild spacetime (semi-
classical gravity) leads to the concept of Hawking radiation phenomenon. In terms of the
surface gravity κ, the Planckian spectrum associated with such radiation defines the tem-
perature κ π=  ( )T c k/ 2H B . For the case of astrophysical candidates of black-holes the mag-
nitude of this temperature is too small to be experimentally probed. Analogue models of the
Schwarzschild solution could thus provide a useful arena to investigate Hawking radiation.
For instance, if we naively accept that Hawking radiation is produced in a system described
by the model examined in the last section, we would obtain ≈ × ·− −T 1.822 10 [K m] RH

4 1,
which lies in the accessible range scale of conventional thermometers for a material sample
with a few centimeters in size. However, a proper demonstration of the existence of this
phenomenon requires the quantization of the electromagnetic field in the nonlinear media
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described by the dielectric coefficients here proposed. This is an issue that deserves a care-
ful analysis.

As an apparently simpler alternative to equation (14), the choice μ μ=
0
could also be

worked out as well, yielding = −E E A A/(1 )0
2 2. For such a case, however, the background

electric field would vanish at horizon A = 0. Thus, the small magnitude of the electric field of
the wave could not be neglected in equation (8) when compared to the background electric
field. This means that equation (8) would not be an effective geometry very near the horizon,
but it would instead depend as well on the field of the propagating wave there. That is to say,
the analogue event horizon would become rather blurred and undefined in such simple case.

Other choices of the form μ ϵ ϵ= +/n n
0

1 with arbitrary constant ≠n 0 yield qualitatively
similar results as the ones presented in the preceding sections for >n 0, or those mentioned in
the previous paragraph for <n 0; such a class includes the proportionality condition [7]
between ϵ and μ claimed to be required in order to give room for the optical equivalence
beyond the geometrical limit. Other alternative choices for μ ϵ E( , ) may possibly prove useful
as well to help understanding better optical analogue models.

The existence of the electric field strength E inside the medium induces electric polar-
izations of the atoms and molecules of this medium, which do contribute to the electric
displacement D. The model here examined presents singular behavior [26] at the horizon
A = 0 for both the magnitude E of the electric field and the permittivity parameter μ, as it is
apparent from inspection of equations (14)–(16). However, one should remember that we are
working in the geometrical optics regime of Maxwellʼs electrodynamics and that the dielectric
material medium which yields the effective spacetime equation (9) cannot be described by a
continuous manifold when very high frequency modes are considered. The lattice spacing,
which depends on the physical properties of the considered dielectric medium, turns out to be
a natural length scale for the proposed model. For instance, distances from the event horizon
of the order of the lattice spacing cannot be measured using the effective metric given by
equation (12). Just to have some estimates, we take the results discussed at the end of section
4, and suppose a medium with lattice spacing =a 5 nm, which is a typical value for crystals.
The electric field strength at = +r R a would then be roughly ≈ −E 10 V m13 1, which
coincides with the limit of applicability of classical Maxwell electrodynamics [27].
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